Two distinct nuclear androgen receptors (ARs) were identified in brain and ovarian tissues of kelp bass, Paralabrax clathratus, termed kbAR1 and kbAR2, which correspond to the two nuclear ARs we have previously characterized in Atlantic croaker, Micropogonias undulatus, termed acAR1 and acAR2. Scatchard analysis of nuclear fractions of whole brain tissue demonstrated that kbAR1 had a single class of high-affinity binding sites for testosterone (T; K(d) of 1. 8 nM and B(max) of 1.0 pmol/g tissue), whereas cytosolic fractions of kbAR2 ovarian tissue had a single class of high-affinity binding sites for dihydrotestosterone (DHT; K(d) of 0.1 nM and B(max) of 0.5 pmol/g tissue). Competition studies showed that both kbAR1 and kbAR2 were specific for androgens. However, kbAR1 bound only T with high affinity, whereas kbAR2 bound DHT, mibolerone, 17alpha-methyl-testosterone, T, and 11-ketotestosterone with high affinity. In addition, we examined the binding affinities of dichlorodiphenyltrichloroethane and its derivatives, several hydroxylated polychlorinated biphenyl (PCB) congeners, PCB mixtures, and the fungicide vinclozolin and its two metabolites M1 and M2 for the two ARs in Atlantic croaker ovarian, testicular, and brain tissues and in kelp bass ovarian and brain tissues. Only 4, 4'-PCB-3-OH and 2',5'-PCB-3-OH demonstrated greater than 50% displacement of [(3)H]testosterone from either acAR1 or kbAR1. In contrast, with the exception of vinclozolin, all of the xenobiotics examined demonstrated binding to acAR2 in testicular and ovarian tissues. The binding affinities were highest in the testicular tissue with M2, 2,2'5'-PCB-4-OH, and o,p'-DDD all binding with EC(50)s less than 10 microM. The binding affinities of xenobiotics to kbAR2 in ovarian tissue were similar to their binding affinities for ovarian acAR2. The finding that AR1 and AR2 possess different binding affinities for natural androgens and synthetic steroids, as well as for xenobiotics, suggests that the activities of androgens and of certain xenobiotics will depend upon the type of AR present within the target tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1095/biolreprod61.4.1152 | DOI Listing |
Biosci Biotechnol Biochem
January 2025
Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
Protein kinase C (PKC) is a family of serine/threonine kinases, and PKC ligands have the potential to be therapeutic seeds for cancer, Alzheimer's disease, and human immunodeficiency virus infection. However, in addition to desired therapeutic effects, most PKC ligands also exhibit undesirable pro-inflammatory effects. The discovery of new scaffolds for PKC ligands is important for developing less inflammatory PKC ligands, such as bryostatins.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China. Electronic address:
Hemoglobin, composed of α- and β-chains, is essential for oxygen transport and is key in diagnosing and treating gastrointestinal and blood disorders. It also aids in detecting blood contamination and estimating transfusion volumes. Immunological methods, based on antigen-antibody interactions, are distinguished by their high sensitivity and accuracy.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Physiology, School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA. Electronic address:
Sarcoplasmic/endoplasmic reticulum Ca-ATPase1 (SERCA1) is responsible for the clearance of cytosolic Ca in skeletal muscle. Due to its vital importance in regulating Ca homeostasis, the regulation of SERCA1 has been intensively studied. Small ankyrin 1 (sAnk1, Ank1.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address:
Carboxyl-terminus of Hsp70-Interacting Protein (CHIP) is an E3 ubiquitin ligase that marks misfolded substrates for degradation. Hyper-activation of CHIP has been implicated in multiple diseases, including cystic fibrosis and cancer, suggesting that it may be a potential drug target. However, there are few tools available for exploring this possibility.
View Article and Find Full Text PDFCell
January 2025
Program in Bioinformatics, Boston University, Boston, MA 02215, USA; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Center for Network Systems Biology, Boston University, Boston, MA 02218, USA; Department of Chemistry, Boston University, Boston, MA 02215, USA; Department of Chemical Physiology and Biochemistry, Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA. Electronic address:
Knowledge of protein-metabolite interactions can enhance mechanistic understanding and chemical probing of biochemical processes, but the discovery of endogenous ligands remains challenging. Here, we combined rapid affinity purification with precision mass spectrometry and high-resolution molecular docking to precisely map the physical associations of 296 chemically diverse small-molecule metabolite ligands with 69 distinct essential enzymes and 45 transcription factors in the gram-negative bacterium Escherichia coli. We then conducted systematic metabolic pathway integration, pan-microbial evolutionary projections, and independent in-depth biophysical characterization experiments to define the functional significance of ligand interfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!