The monoclonal antibody C7-50 binds to the HCV core protein with high sensitivity and specificity. The coding sequences of the variable domains of the antibody were determined following cDNA cloning of the Fab and sFv fragments. Subsequently, intracellular expression and binding of these antibody fragments to the HCV core protein as a potential antiviral approach were studied. There was high specificity and sensitivity of binding of bacterially expressed, recombinant C7-50 Fab to HCV core as measured by EIA and immunoblot. For expression in mammalian cells, the C7-50 antibody was subcloned in the sFv format by the introduction of a (Gly(4)Ser)(3) linker spaced between light and heavy chains. Northern and Western blot analysis as well as confocal microscopy established the targeted expression of the C7-50 sFv antibody fragment in the endoplasmic reticulum of transfected cells. The colocalization and intracellular binding of the antibody fragment to HCV core protein was confirmed by immunoprecipitation and subsequent immunoblot analysis. This study demonstrates that gene delivery of cDNA coding sequences inducing intracellular expression of C7-50 antibody fragments leads to binding of the antibody fragment to the HCV core protein within the secretory compartment of transfected cells. Intracellular immunization represents a promising antiviral approach to interfere with the life cycle of HCV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/bbrc.1999.1350 | DOI Listing |
J Transl Med
January 2025
Medical College of YiChun University, Xuefu Road No 576, Yichun, 336000, Jiangxi, People's Republic of China.
Background: Artificial sweeteners (AS) have been widely utilized in the food, beverage, and pharmaceutical industries for decades. While numerous publications have suggested a potential link between AS and diseases, particularly cancer, controversy still surrounds this issue. This study aims to investigate the association between AS consumption and cancer risk.
View Article and Find Full Text PDFNat Metab
January 2025
Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
Choline is an essential micronutrient critical for cellular and organismal homeostasis. As a core component of phospholipids and sphingolipids, it is indispensable for membrane architecture and function. Additionally, choline is a precursor for acetylcholine, a key neurotransmitter, and betaine, a methyl donor important for epigenetic regulation.
View Article and Find Full Text PDFNature
January 2025
Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Histone H3 monoaminylations at Gln5 represent an important family of epigenetic marks in brain that have critical roles in permissive gene expression. We previously demonstrated that serotonylation and dopaminylation of Gln5 of histone H3 (H3Q5ser and H3Q5dop, respectively) are catalysed by transglutaminase 2 (TG2), and alter both local and global chromatin states. Here we found that TG2 additionally functions as an eraser and exchanger of H3 monoaminylations, including H3Q5 histaminylation (H3Q5his), which displays diurnally rhythmic expression in brain and contributes to circadian gene expression and behaviour.
View Article and Find Full Text PDFNature
January 2025
Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany.
The oxygen-sensitive molybdenum-dependent nitrogenase of Azotobacter vinelandii is protected from oxidative damage by a reversible 'switch-off' mechanism. It forms a complex with a small ferredoxin, FeSII (ref. ) or the 'Shethna protein II', which acts as an O sensor and associates with the two component proteins of nitrogenase when its [2Fe:2S] cluster becomes oxidized.
View Article and Find Full Text PDFNature
January 2025
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
The low reduction potentials required for the reduction of dinitrogen (N) render metal-based nitrogen-fixation catalysts vulnerable to irreversible damage by dioxygen (O). Such O sensitivity represents a major conundrum for the enzyme nitrogenase, as a large fraction of nitrogen-fixing organisms are either obligate aerobes or closely associated with O-respiring organisms to support the high energy demand of catalytic N reduction. To counter O damage to nitrogenase, diazotrophs use O scavengers, exploit compartmentalization or maintain high respiration rates to minimize intracellular O concentrations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!