Background: Previous reports have disclosed that a significant difference exists between the electrical impedance properties of healthy and chronically infarcted ventricular myocardium.
Purpose: To assess the potential utility of electrical impedance as the basis for mapping in chronically infarcted left ventricular myocardium. Specifically: (1) to delineate electrical impedance properties of healthy and chronically infarcted ventricular myocardium, with special emphasis on the infarction border zone; (2) to correlate impedance properties with tissue histology; (3) to correlate impedance properties with electrogram amplitude and duration; (4) To demonstrate that endocardial impedance can be measured effectively in vivo using an electrode mounted on a catheter inserted percutaneously.
Methods: An ovine model of chronic left ventricular infarction was utilized. Sites of healthy myocardium, densely infarcted myocardium and the infarction border zone were investigated. Bulk impedance was measured in vitro using capacitor cell, four-electrode and unipolar techniques. Epicardial and endocardial impedances were measured in vivo using four-electrode and unipolar techniques. Impedance was measured at multiple frequencies. Electrographic amplitude, duration and amplitude/duration ratio were measured using bipolar electrograms during sinus rhythm. Quantitation of tissue content of myocytes, collagen, elastin and neurovascular elements was performed.
Results: Densely infarcted myocardial impedance was significantly lower than healthy myocardium. Impedance gradually decreased in the border zone transitioning between healthy myocardium and dense infarction. Decreasing impedance correlated with a decrease in tissue myocyte content. The magnitude of the difference in impedance between densely infarcted and healthy myocardium increased as the measurement frequency decreased. Healthy myocardium exhibited a marked frequency dependence in its impedance properties; this phenomenon was not observed in densely infarcted myocardium. There was a direct association between impedance and both electrogram amplitude and amplitude/duration ratio. There was an inverse association between impedance and electrogram duration. Endocardial impedance, measured in vivo using a electrode catheter inserted percutaneously, was demonstrated to distinguish between healthy and infarcted myocardium.
Conclusions: The electrical impedance properties of healthy and infarcted left ventricular myocardium differ markedly. The properties of the infarction border zone are intermediate between healthy and infarcted myocardium. Impedance may be a useful assay of cardiac tissue content and adaptable for cardiac mapping in vivo. Condensed Abstract. To delineate the electrical impedance properties of healthy and chronically infarcted left ventricular myocardium emphasizing the infarction border zone, impedance was measured in chronically infarcted ovine hearts. Densely infarcted myocardial impedance was significantly lower than healthy myocardium. Impedance gradually decreased in the infarction border zone in transition between healthy myocardium and dense infarction. This correlated with a decreasing myocyte content. The magnitude of the difference in impedance between densely infarcted and healthy myocardium increased as measurement frequency decreased. There was a direct association between impedance and electrogram characteristics. Endocardial impedance, measured in vivo using an electrode catheter inserted percutaneously, distinguished between healthy and infarcted myocardium
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1009887306055 | DOI Listing |
Phys Chem Chem Phys
January 2025
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China.
It is a major challenge to obtain broadband microwave absorption (MA) properties using low dielectric or magnetic nanoparticle-decorated carbon composites due to the limited single conductive loss or polarization loss of the carbon materials used as substrates. Novel pure cellulose-derived graphite carbon (CGC) materials can be used as an exceptional substrate option due to their special defective graphitic carbon structure, which provides both conduction and polarization loss. Herein, CGC@ZnO composites were first synthesized by atomic layer deposition (ALD) for use as microwave absorbents.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
Naval Group Research, 199 av. Pierre-Gilles de Gennes, Ollioulles, 83190 France.
The theory of similitudes provides simple laws by which the response of one system (usually of small size) can be used to predict the response of another system (usually larger). This paper establishes the exact conditions and laws of similitude for the vibrations and acoustic radiation of a panel immersed in a heavy fluid and excited by a turbulent boundary layer. Previous work on vibroacoustic similitude had not considered the problem of a panel radiating in heavy fluid, for which the radiation impedance of the structure must be scaled.
View Article and Find Full Text PDFA reconfigurable holographic metasurface (HM) with multifunctional modulation of radiation and scattering for conformal applications is designed in this paper. Based on optical holography theory, a holographic conformal modulation mechanism is proposed, and the conformal surface impedance distribution of HM is derived. To illustrate this mechanism, the designed conformal reconfigurable HM is used to demonstrate a series of radiation and scattering modulation functions, with its reconfigurable property enabling dynamic beam control.
View Article and Find Full Text PDFBioact Mater
May 2025
State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China.
Implantable neural electrodes are key components of brain-computer interfaces (BCI), but the mismatch in mechanical and biological properties between electrode materials and brain tissue can lead to foreign body reactions and glial scarring, and subsequently compromise the long-term stability of electrical signal transmission. In this study, we proposed a new concept for the design and bioaugmentation of implantable electrodes (bio-array electrodes) featuring a heterogeneous gradient structure. Different composite polyaniline-gelatin-alginate based conductive hydrogel formulations were developed for electrode surface coating.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR. China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR. China. Electronic address:
Antimony (Sb) contamination in water resources poses a critical environmental and health challenge globally. Sulfate reducing bacteria (SRB) are employed to reduce SO to S for removing Sb in a microbial electrolysis cell (MEC). Yet, the reduction efficiency of reducing SO and Sb(Ⅴ) through SRB remains relatively low, and the underlying mechanism remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!