Characterization of mammalian homologues of Drosophila transient receptor potential protein (TRP) is an important clue to understand molecular mechanisms underlying Ca(2+) influx activated in response to stimulation of G(q) protein-coupled receptors in vertebrate cells. Here we have isolated cDNA encoding a novel seventh mammalian TRP homologue, TRP7, from mouse brain. TRP7 showed abundant RNA expression in the heart, lung, and eye and moderate expression in the brain, spleen, and testis. TRP7 recombinantly expressed in human embryonic kidney cells exhibited distinctive functional features, compared with other TRP homologues. Basal influx activity accompanied by reduction in Ca(2+) release from internal stores was characteristic of TRP7-expressing cells but was by far less significant in cells expressing TRP3, which is structurally the closest to TRP7 in the TRP family. TRP7 induced Ca(2+) influx in response to ATP receptor stimulation at ATP concentrations lower than those necessary for activation of TRP3 and for Ca(2+) release from the intracellular store, which suggests that the TRP7 channel is activated independently of Ca(2+) release. In fact, TRP7 expression did not affect capacitative Ca(2+) entry induced by thapsigargin, whereas TRP7 greatly potentiated Mn(2+) influx induced by diacylglycerols without involvement of protein kinase C. Nystatin-perforated and conventional whole-cell patch clamp recordings from TRP7-expressing cells demonstrated the constitutively activated and ATP-enhanced inward cation currents, both of which were initially blocked and then subsequently facilitated by extracellular Ca(2+) at a physiological concentration. Impairment of TRP7 currents by internal perfusion of the Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid revealed an essential role of intracellular Ca(2+) in activation of TRP7, and their potent activation by the diacylglycerol analogue suggests that the TRP7 channel is a new member of diacylglycerol-activated cation channels. Relative permeabilities indicate that TRP7 is slightly selective to divalent cations. Thus, our findings reveal an interesting correspondence of TRP7 to the background and receptor stimulation-induced cation currents in various native systems.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.274.39.27359DOI Listing

Publication Analysis

Top Keywords

trp7
14
ca2+ release
12
ca2+
9
transient receptor
8
receptor potential
8
potential protein
8
homologue trp7
8
constitutively activated
8
stimulation protein-coupled
8
ca2+ influx
8

Similar Publications

The cyclic human neuropeptide Urotensin II (hU-II) is an important regulatory peptide found in the central nervous system, cardiovascular system, kidney, etc., however, its conformational structure and dynamics in aqueous solutions have not been studied in detail experimentally. In the present study, the structure of hU-II and the mechanism of its adsorption on the electrochemically roughened Ag electrode are investigated using electrochemical surface-enhanced Raman scattering spectroscopy (EC-SERS) in the voltage range from -1.

View Article and Find Full Text PDF

Disulfide bonds provide a convenient method for chemoselective alteration of peptide and protein structure and function. We previously reported that mild oxidation of a p53-derived bisthiol peptide (CTFANLWRLLAQNC) under dilute non-denaturing conditions led to unexpected disulfide-linked dimers as the exclusive product. The dimers were antiparallel, significantly α-helical, resistant to protease degradation, and easily reduced back to the original bisthiol peptide.

View Article and Find Full Text PDF

Time-resolved fluorescence of tryptophan characterizes membrane perturbation by cyclic lipopeptides.

Biophys J

August 2024

Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany; Center for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada. Electronic address:

Viscosin is a membrane-permeabilizing, cyclic lipopeptide (CLiP) produced by Pseudomonas species. Here, we have studied four synthetic analogs (L1W, V4W, L5W, and L7W), each with one leucine (Leu; L) or valine residue exchanged for tryptophan (Trp; W) by means of time-resolved fluorescence spectroscopy of Trp. To this end, we recorded the average fluorescence lifetime, rotational correlation time and limiting anisotropy, dipolar relaxation time and limiting extent of relaxation, rate constant of acrylamide quenching, effect of HO-DO exchange, and time-resolved half-width of the spectrum in the absence and presence of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) liposomes.

View Article and Find Full Text PDF

Unraveling activation-related rearrangements and intrinsic divergence from ligand-induced conformational changes of the dopamine D3 and D2 receptors.

bioRxiv

November 2023

Computational Chemistry and Molecular Biophysics Section, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.

Effective rational drug discovery targeting a specific protein hinges on understanding their functional states and distinguishing it from homologs. However, for the G protein coupled receptors, both the activation-related conformational changes (ACCs) and the intrinsic divergence among receptors can be misled or obscured by ligand-induced conformational changes (LCCs). Here, we unraveled ACCs and intrinsic divergence from LCCs of the dopamine D3 and D2 receptors (D3R and D2R), by analyzing their experimentally determined structures and the molecular dynamics simulation results of the receptors bound with different ligands.

View Article and Find Full Text PDF

Matrine (MA) is an alkaloid extracted from the root of genus Sophora with various pharmacological activities. Production of MA by endophytic fungi offers an alternative challenge to reduce the massive consumption to meet the increasing demand of MA. In the current study, the positive strains with MA producing ability were screened from endophytic fungal isolated from the root of Sophora tonkinensis Gagnep.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!