Morphological differences were quantified in three-dimensions among individuals with untreated isolated metopic synostosis and between those individuals and similar aged-matched normal dry skulls to test two hypotheses: first, that the dysmorphology is a self-correcting condition; and second, that a lack of vertical growth of the skull produces this dysmorphology. Three-dimensional (3D) coordinates were recorded for 22 craniofacial landmarks from CT scans of 15 metopic patients, ranging from 5- to 32-months-old, and of four normal dry skulls, ranging in age from 6- to 36-months-old. The patient population was diagnosed with isolated metopic synostosis at The Johns Hopkins Medical Institutions in Baltimore, Maryland or Children's Hospital in St. Louis, Missouri. Comparisons between the metopic age groups indicate that the trigonocephalic phenotype worsens through time. Between 5 and 14 months, the neurocranium displays an increase in vertical growth. This was followed by a lack of vertical growth between 14 and 32 months. The face displays a lack of vertical growth from 5 to 14 months and an increase in vertical growth after 14 months. Comparisons between the metopic age groups and the normal skulls indicate that the trigonocephalic head is taller superoinferiorly and longer anteroposteriorly. Relative to the normal phenotype, the inferior temporal region in the metopic phenotype is narrow. These findings enabled the rejection of both hypotheses and localized form differences between normal and metopic phenotypes. Based on these results, we suggest that the trigonocephalic phenotype worsens with age and the amount of vertical growth that produces the trigonocephalic phenotype varies throughout growth with respect to location within the skull and age.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(SICI)1097-0185(19991001)256:2<177::AID-AR8>3.0.CO;2-Q | DOI Listing |
Nano Lett
January 2025
Wuhan National Laboratory for Optoelectronics, School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China.
Recent developments in artificial intelligence and the internet-of-things have created great demand for low-power microelectronic devices. Two-dimensional (2D) electrical switching materials are extensively used in neuromorphic computing technology, yet their high leakage current and low endurance impede their further application. This study presents a vertical crossbar-structured conductive-bridge threshold switching device based on 2D TaSe oxide.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Orthodontics, Afyonkarahisar Health Sciences University Faculty of Dentistry, Afyonkarahisar, Turkey.
Background: To compare the effects of first premolar extraction, molar distalization, and non-extraction treatments on the angulation and vertical positions of maxillary second molars (MxM2s) and maxillary third molars (MxM3s). To our knowledge, this is the first study to compare the effects of three different treatment types on MxM3 simultaneously.
Methods: Initial (T0) and final (T1) panoramic radiographs of three different patient groups were analyzed: first premolar extraction group (n = 26 patients, 52 MxM2, 52 MxM3), molar distalization group (n = 20 patients, 40 MxM2, 40 MxM3), and non-extraction group (n = 31 patients, 62 MxM2, 62 MxM3).
Sci Rep
January 2025
School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China.
MXenes, as a novel two-dimensional lamellar material, has attracted much attention. However, MXenes lamellar are prone to collapse and stacking under hydrogen bonding and interlayer van der Waals forces, which affects their electrochemical and capacitive deionization performance. A three-dimensional Ni-1,3,5-benzenetricarboxylate/TiCT (Ni-BTC/TiCT) composite electrode material was developed to enhance the electrochemical and capacitive deionization performance.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
Sexual reproduction and recruitment enhance the genetic diversity and evolution of reef-building corals for population recovery and coral reef conservation under climate change. However, new recruits are vulnerable to physical changes and the mechanisms of symbiosis establishment remain poorly understood. Here, , a broadcast spawning hermaphrodite reef-building coral, was subjected to settlement and juvenile growth in flow-through seawater at 27.
View Article and Find Full Text PDFCell Rep Med
January 2025
Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; Yonsei New ΙΙ Han Institute for Integrative Lung Cancer Research, Yonsei University of Medicine, Seoul, Republic of Korea. Electronic address:
Uncommon epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) pose therapeutic challenge due to limited response to EGFR tyrosine kinase inhibitors (TKIs). This study presents preclinical evidence and mechanistic insights into the combination of lazertinib, a third-generation EGFR-TKI; and amivantamab, an EGFR-MET bispecific antibody, for treating NSCLC with uncommon EGFR mutations. The lazertinib-amivantamab combination demonstrates significant antitumor activity in patient-derived models with uncommon EGFR mutations either before treatment or after progressing on EGFR-TKIs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!