The substrate specificity of the ileal and the hepatic Na(+)/bile acid cotransporters was determined using brush border membrane vesicles and CHO cell lines permanently expressing the Na(+)/bile acid cotransporters from rabbit ileum or rabbit liver. The hepatic transporter showed a remarkably broad specificity for interaction with cholephilic compounds in contrast to the ileal system. The anion transport inhibitor diisothiocyanostilbene disulfonate (DIDS) is a strong inhibitor of the hepatic Na(+)/bile acid cotransporter, but does not show any affinity to its ileal counterpart. Inhibition studies and uptake measurements with about 40 different bile acid analogues differing in the number, position, and stereochemistry of the hydroxyl groups at the steroid nucleus resulted in clear structure;-activity relationships for the ileal and hepatic bile acid transporters. The affinity to the ileal and hepatic Na(+)/bile acid cotransport systems and the uptake rates by cell lines expressing those transporters as well as rabbit ileal brush border membrane vesicles is primarily determined by the substituents on the steroid nucleus. Two hydroxy groups at position 3, 7, or 12 are optimal whereas the presence of three hydroxy groups decreased affinity. Vicinal hydroxy groups at positions 6 and 7 or a shift of the 7-hydroxy group to the 6-position significantly decreased the affinity to the ileal transporter in contrast to the hepatic system. 6-Hydroxylated bile acid derivatives are preferred substrates of the hepatic Na(+)/bile acid cotransporter. Surprisingly, the 3alpha-hydroxy group being present in all natural bile acids is not essential for high affinity interaction with the ileal and the hepatic bile acid transporter. The 3alpha-hydroxy group seems to be necessary for optimal transport of a bile acid across the hepatocyte canalicular membrane. A modification of bile acids at the 3-position therefore conserves the bile acid character thus determining the 3-position of bile acids as the ideal position for drug targeting strategies using bile acid transport pathways.
Download full-text PDF |
Source |
---|
Metab Brain Dis
January 2025
Hepato-Neuro Laboratory, Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900, Rue Saint-Denis - Pavillon R, R08.422, Montréal (Québec), H2X 0A9, Canada.
Sarcopenia and hepatic encephalopathy (HE) are complications of chronic liver disease (CLD), which negatively impact clinical outcomes. Hyperammonemia is considered to be the central component in the pathogenesis of HE, however ammonia's toxic effects have also been shown to impinge on extracerebral organs including the muscle. Our aim was to investigate the effect of attenuating hyperammonemia with ornithine phenylacetate (OP) on muscle mass loss and associated molecular mechanisms in rats with CLD.
View Article and Find Full Text PDFAAPS J
January 2025
Certara UK Limited, Level 2, Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK.
Bile salts are biosurfactants released into the intestinal lumen which play an important role in the solubilisation of fats and certain drugs. Their concentrations vary along the gastrointestinal tract (GIT). This is significant for implementation in physiologically based pharmacokinetic (PBPK) modelling to mechanistically capture drug absorption.
View Article and Find Full Text PDFJ Nutr Biochem
January 2025
Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China. Electronic address:
Inhibition of appetite is an effective approach to fight obesity. Recently, bile acids have been reported to suppress appetite and alleviate obesity via the Takeda G protein-coupled receptor 5 (TGR5). However, whether the downstream signaling molecule cyclic adenosine monophosphate (cAMP) of TGR5 is involved in this process remains unclear.
View Article and Find Full Text PDFE-waste contains hazardous chemicals that may be a direct health risk for workers involved in recycling. We conducted an untargeted metabolomics analysis of urine samples collected from male e-waste processing workers to explore metabolic changes associated with chemical exposures in e-waste recycling in Belgium, Finland, Latvia, Luxembourg, the Netherlands, Poland, and Portugal. Questionnaire data and urine samples were obtained from workers involved in the processing of e-waste (sorting, dismantling, shredding, pre-processing, metal, and non-metal processing), as well as from controls with no known occupational exposure.
View Article and Find Full Text PDFBioconjug Chem
January 2025
Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar 382426, India.
This work describes the synthesis, characterization, and antibacterial properties of four bile acid-triclosan conjugates. The in vitro antibacterial activity of synthetic bile acid-triclosan conjugates was investigated against a panel of Gram-positive and Gram-negative bacteria. Conjugates and show high activity against (ATCC25922), with IC values of 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!