Chest wall kinematics and respiratory muscle action in walking healthy humans.

J Appl Physiol (1985)

Fondazione Don C. Gnocchi-ONLUS, UOF di Riabilitazione Respiratoria, Centro di S. Maria agli Ulivi, 50020 Pozzolatico (FI), Italy.

Published: September 1999

AI Article Synopsis

Article Abstract

We studied chest wall kinematics and respiratory muscle action in five untrained healthy men walking on a motor-driven treadmill at 2 and 4 miles/h with constant grade (0%). The chest wall volume (Vcw), assessed by using the ELITE system, was modeled as the sum of the volumes of the lung-apposed rib cage (Vrc,p), diaphragm-apposed rib cage (Vrc,a), and abdomen (Vab). Esophageal and gastric pressures were measured simultaneously. Velocity of shortening (V(di)) and power [Wdi = diaphragm pressure (Pdi) x V(di)] of the diaphragm were also calculated. During walking, the progressive increase in end-inspiratory Vcw (P < 0.05) resulted from an increase in end-inspiratory Vrc,p and Vrc,a (P < 0.01). The progressive decrease (P < 0.05) in end-expiratory Vcw was entirely due to the decrease in end-expiratory Vab (P < 0.01). The increase in Vrc,a was proportionally slightly greater than the increase in Vrc,p, consistent with minimal rib cage distortion (2.5 +/- 0.2% at 4 miles/h). The Vcw end-inspiratory increase and end-expiratory decrease were accounted for by inspiratory rib cage (RCM,i) and abdominal (ABM) muscle action, respectively. The pressure developed by RCM,i and ABM and Pdi progressively increased (P < 0.05) from rest to the highest workload. The increase in V(di), more than the increase in the change in Pdi, accounted for the increase in Wdi. In conclusion, we found that, in walking healthy humans, the increase in ventilatory demand was met by the recruitment of the inspiratory and expiratory reserve volume. ABM action accounted for the expiratory reserve volume recruitment. We have also shown that the diaphragm acts mainly as a flow generator. The rib cage distortion, although measurable, is minimized by the coordinated action of respiratory muscles.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jappl.1999.87.3.938DOI Listing

Publication Analysis

Top Keywords

rib cage
20
chest wall
12
muscle action
12
increase
9
wall kinematics
8
kinematics respiratory
8
respiratory muscle
8
walking healthy
8
healthy humans
8
increase end-inspiratory
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!