Mice harboring a functional deletion of the pro-atrial natriuretic peptide (ANP) gene (-/-) develop salt-sensitive hypertension relative to their wild-type (+/+) counterparts after prolonged (>1 wk) maintenance on high-salt (HS, 8% NaCl) diet. We reported recently that the sensitization of arterial blood pressure (ABP) to dietary salt in the -/- mice is associated with failure to downregulate plasma renin activity. To further characterize the role and mechanism of ANG II in the sensitization of ABP to salt in the ANP "knockout" mice, we measured ABP, heart rate (HR), and plasma catecholamine and aldosterone concentrations in -/- and +/+ mice maintained on HS for 4 wk and treated with daily injections of AT1 receptor antagonist DuP-753 (losartan) or distilled water (control). Daily food and water intake and fluid and electrolyte excretion were also measured during the first and last weeks of the dietary regimen. Cumulative urinary excretion of fluid and electrolytes did not differ significantly between genotypes and was not altered by chronic treatment with losartan. Basal ABP and HR were significantly elevated in control -/- mice compared with control +/+ mice. Losartan did not affect ABP or HR in +/+ mice, but reduced ABP and HR in the -/- mice to the levels in the +/+ mice. Total plasma catecholamine was elevated by approximately ten-fold in control -/- mice compared with control +/+ mice. Losartan reduced plasma catecholamine concentration significantly in -/- mice and abrogated the difference in plasma catecholamine between -/- and +/+ mice on HS diet. Plasma aldosterone did not differ significantly between genotypes and was not altered by losartan. We conclude that salt sensitivity of ABP in ANP knockout mice is mediated, at least in part, by a synergistic interaction between ANG II and sympathetic nerve activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.1999.277.3.R624 | DOI Listing |
Clin Exp Pharmacol Physiol
March 2025
School of Physical Education, Hangzhou Normal University, Hangzhou, China.
Exercise activates autophagy and lysosome system in skeletal muscle, which are known to play an important role in metabolic adaptation. However, the mechanism of exercise-activated autophagy and lysosome system in obese insulin resistance remains covert. In this study, we investigated the role of exercise-induced activation of autophagy and lysosome system in improving glucose metabolism of skeletal muscle.
View Article and Find Full Text PDFBlood Adv
January 2025
University of Iowa, Iowa city, Iowa, United States.
Respiratory tract infections (RTIs) caused by bacteria or viruses are associated with stroke severity. Recent studies have revealed an imbalance in the von Willebrand factor (VWF)-ADAMTS13 axis in patients with RTIs, including COVID-19. We examined whether this imbalance contributes to RTI-mediated stroke severity.
View Article and Find Full Text PDFDiabetes
January 2025
Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
To curb the obesity epidemic, it is imperative that we improve our understanding of the mechanisms controlling fat mass and body weight regulation. While great progress has been made in mapping the biological feedback forces opposing weight loss, the mechanisms countering weight gain remain less well defined. Here, we integrate a mouse model of intragastric overfeeding with a comprehensive evaluation of the regulatory aspects of energy balance, encompassing food intake, energy expenditure, and fecal energy excretion.
View Article and Find Full Text PDFScience
January 2025
Salk Institute for Biological Studies, La Jolla, CA, USA.
Distinct brain circuits control sex preferences in mice.
View Article and Find Full Text PDFScience
January 2025
Gastroenterology Division, Massachusetts General Hospital, Boston, MA, USA.
Bile acids differentially affect immune cell responses to liver cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!