The effect of direct intestinal overexpression of epidermal growth factor (EGF) on postresection adaptation has been investigated by the production of transgenic mouse lines. A murine pro-EGF cDNA construct was produced, and expression of the EGF construct was targeted to the small intestine with the use of the rat intestinal fatty acid-binding protein promoter. An approximately twofold increase in intestinal EGF mRNA and protein was detected in heterozygous mice. No changes in serum EGF levels were noted. Except for a slightly shortened small intestine, no other abnormal phenotype was observed. Intestinal adaptation (increases in body weight, DNA, protein content, villus height, and crypt depth) was markedly enhanced after a 50% proximal small bowel resection in transgenic mice compared with nontransgenic littermates. This transgenic mouse model permits the study of intestinal adaptation and other effects of EGF in the small intestine in a more physiological and directed manner than has been previously possible. These results endorse a direct autocrine/paracrine mechanism for EGF on enterocytes as a means to enhance adaptation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpgi.1999.277.3.G533 | DOI Listing |
Viruses
November 2024
National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
Porcine rotavirus A (RVA) is one of the major etiological agents of diarrhea in piglets and constitutes a significant threat to the swine industry. A molecular epidemiological investigation was conducted on 2422 diarrhea samples from Chinese pig farms to enhance our understanding of the molecular epidemiology and evolutionary diversity of RVA. The findings revealed an average RVA positivity rate of 42% (943/2422), and the study included data from 26 provinces, primarily in the eastern, southern and southwestern regions.
View Article and Find Full Text PDFPharmaceutics
December 2024
Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure 737-0112, Japan.
Background: 5-Aminosalicylic acid (5-ASA), the first-line therapy for ulcerative colitis, is a poorly soluble zwitterionic drug. Unformulated 5-ASA is thought to be extensively absorbed in the small intestine.
Methods: The pH-dependent solubility of 5-ASA in vitro and the intestinal membrane distribution of 5-ASA and its N-acetyl metabolite (AC-5-ASA) after the oral administration of 5-ASA were examined in fed rats.
Nutrients
December 2024
Food Chemistry and Nutraceutical Laboratory, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
Background: Three herbal extracts ( Willd., Lorentz, and L.) were mixed with three essential oils ( Mill.
View Article and Find Full Text PDFNutrients
December 2024
Department of Pediatrics 1, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, Gheorghe Marinescu Street no 38, 540136 Târgu Mureș, Romania.
The gut microbiome is essential for children's normal growth and development, with its formation aligning closely with key stages of growth. Factors like birth method, feeding practices, and antibiotic exposure significantly shape the composition and functionality of the infant gut microbiome. Small intestinal bacterial overgrowth (SIBO) involves an abnormal increase in bacteria within the small intestine.
View Article and Find Full Text PDFMicroorganisms
December 2024
Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
This study aimed to evaluate the effects of Mosla chinensis extract (MCE) on broiler intestinal health. A total of 240 1-day-old Arbor Acres (AA) broilers (balanced for sex) were randomly allocated into four treatment groups, each with six replicates of 10 chickens. The study comprised a starter phase (days 1-21) and a grower phase (days 22-42).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!