Extracellular ATP stimulates volume decrease in Necturus red blood cells.

Am J Physiol

Department of Biology, Ripon College, Ripon, Wisconsin 54971, USA.

Published: September 1999

This study examined whether extracellular ATP stimulates regulatory volume decrease (RVD) in Necturus maculosus (mudpuppy) red blood cells (RBCs). The hemolytic index (a measure of osmotic fragility) decreased with extracellular ATP (50 microM). In contrast, the ATP scavenger hexokinase (2.5 U/ml, 1 mM glucose) increased osmotic fragility. In addition, the ATP-dependent K+ channel antagonist glibenclamide (100 microM) increased the hemolytic index, and this inhibition was reversed with ATP (50 microM). We also measured cell volume recovery in response to hypotonic shock electronically with a Coulter counter. Extracellular ATP (50 microM) enhanced cell volume decrease in a hypotonic (0.5x) Ringer solution. In contrast, hexokinase (2.5 U/ml) and apyrase (an ATP diphosphohydrolase, 2.5 U/ml) inhibited cell volume recovery. The inhibitory effect of hexokinase was reversed with the Ca2+ ionophore A-23187 (1 microM); it also was reversed with the cationophore gramicidin (5 microM in a choline-Ringer solution), indicating that ATP was linked to K+ efflux. In addition, glibenclamide (100 microM) and gadolinium (10 microM) inhibited cell volume decrease, and the effect of these agents was reversed with ATP (50 microM) and A-23187 (1 microM). Using the whole cell patch-clamp technique, we found that ATP (50 microM) stimulated a whole cell current under isosmotic conditions. In addition, apyrase (2.5 U/ml), glibenclamide (100 microM), and gadolinium (10 microM) inhibited whole cell currents that were activated during hypotonic swelling. The inhibitory effect of apyrase was reversed with the nonhydrolyzable analog adenosine 5'-O-(3-thiotriphosphate) (50 microM), and the effect of glibenclamide or gadolinium was reversed with ATP (50 microM). Finally, anionic whole cell currents were activated with hypotonic swelling when ATP was the only significant charge carrier, suggesting that increases in cell volume led to ATP efflux through a conductive pathway. Taken together, these results indicate that extracellular ATP stimulated cell volume decrease via a Ca2+-dependent step that led to K+ efflux.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.1999.277.3.C480DOI Listing

Publication Analysis

Top Keywords

atp microm
24
cell volume
24
extracellular atp
20
volume decrease
20
microm
15
atp
13
glibenclamide 100
12
100 microm
12
reversed atp
12
inhibited cell
12

Similar Publications

The two CO-dehydrogenases of Thermococcus sp. AM4.

Biochim Biophys Acta Bioenerg

July 2020

Aix-Marseille Université, CNRS, BIP UMR 7281, 31 Chemin J. AIGUIER, CS70071, F-13402 Marseille Cedex 20, (France). Electronic address:

Ni-containing CO-dehydrogenases (CODHs) allow some microorganisms to couple ATP synthesis to CO oxidation, or to use either CO or CO as a source of carbon. The recent detailed characterizations of some of them have evidenced a great diversity in terms of catalytic properties and resistance to O. In an effort to increase the number of available CODHs, we have heterologously produced in Desulfovibrio fructosovorans, purified and characterized the two CooS-type CODHs (CooS1 and CooS2) from the hyperthermophilic archaeon Thermococcus sp.

View Article and Find Full Text PDF

CL316243 induces phosphatidylinositol 3,4,5-triphosphate production in rat adipocytes in an adenosine deaminase-, pertussis toxin-, or wortmannin-sensitive manner.

Physiol Res

July 2016

Chiba Institute of Science, Choshi, Chiba, Japan, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan.

The effect of beta(3)-adrenoceptor (beta(3)-AR) agonists on adipocytes treated or not treated with signaling modulators has not been sufficiently elucidated. Using rat epididymal adipocytes (adipocytes) labeled with [(32)P]orthophosphate, we found that treatment with the selective beta(3)-AR agonist CL316243 (CL; 1 microM) induces phosphatidylinositol (PI) 3,4,5-triphosphate (PI[3,4,5]P(3)) production and that this response is inhibited by adenosine deaminase (ADA, an adenosine-degrading enzyme; 2 U/ml), pertussis toxin (PTX, an inactivator of inhibitory guanine-nucleotide-binding protein; 1 microg/ml), or wortmannin (WT, a PI-kinase inhibitor; 3 microM). The results showed that CL induced PI(3,4,5)P(3) production in intact adipocytes and that this production was affected by signaling modulators.

View Article and Find Full Text PDF

Peritoneal dialysis (PD) solutions dilate microvessels by undefined mechanisms. This vasodilation directly affects ultrafiltration and solute exchange during a PD dwell and is thought to account for the variable mass transfer area coefficient for small solutes during a glucose-based hypertonic dwell. We hypothesized that PD-mediated vasodilation occurs by endothelium-dependent mechanisms that involve endothelium energy-dependent K+ channels (K(ATP)), adenosine A1 receptor activation, and NO release.

View Article and Find Full Text PDF

The influence of the donor and the precursor of NO, namely 100 mM sodium nitroprusside and sodium nitrite on the energo-dependent Ca(2+)-transport in isolated mitochondria from rat myometrium was investigated. Changes in the mitochondrial matrix Ca(2+)-concentration was evaluated by spectrofluorimetry using Ca2+ sensitive probe Fluo-4 AM. Mg(2+)-ATP-dependent Ca(2+)-accumulation on mitochondria in the presence of succinate significantly stimulated by nitric oxide, in particular, 100 microM sodium nitroprusside amplified the transport by 1.

View Article and Find Full Text PDF

Multidrug resistance (MDR) is a major obstacle in the chemotherapeutic treatment of tumors. Elevated expression of the P-glycoprotein (P-gp) transporter is associated with MDR and responsible for the resistance of tumor cells against a variety of anticancer drugs. In this study, the reversal effect of ergosterol (Erg) on SGC7901/Adr cells was investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!