P2X receptor-mediated ionic currents in dorsal root ganglion neurons.

J Neurophysiol

Neurological and Urological Diseases Research, Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, Illinois 60064-3500, USA.

Published: September 1999

Nociceptive neurons in the dorsal root ganglia (DRG) are activated by extracellular ATP, implicating P2X receptors as potential mediators of painful stimuli. However, the P2X receptor subtype(s) underlying this activity remain in question. Using electrophysiological techniques, the effects of P2X receptor agonists and antagonists were examined on acutely dissociated adult rat lumbar DRG neurons. Putative P2X-expressing nociceptors were identified by labeling neurons with the lectin IB4. These neurons could be grouped into three categories based on response kinetics to extracellularly applied ATP. Some DRG responses (slow DRG) were relatively slowly activating, nondesensitizing, and activated by the ATP analogue alpha,beta-meATP. These responses resembled those recorded from 1321N1 cells expressing recombinant heteromultimeric rat P2X2/3 receptors. Other responses (fast DRG) were rapidly activating and desensitized almost completely during agonist application. These responses had properties similar to those recorded from 1321N1 cells expressing recombinant rat P2X3 receptors. A third group (mixed DRG) activated and desensitized rapidly (P2X3-like), but also had a slow, nondesensitizing component that functionally prolonged the current. Like the fast component, the slow component was activated by both ATP and alpha, beta-meATP and was blocked by the P2X antagonist TNP-ATP. But unlike the fast component, the slow component could follow high-frequency activation by agonist, and its amplitude was potentiated under acidic conditions. These characteristics most closely resemble those of rat P2X2/3 receptors. These data suggest that there are at least two populations of P2X receptors present on adult DRG nociceptive neurons, P2X3 and P2X2/3. These receptors are expressed either separately or together on individual neurons and may play a role in the processing of nociceptive information from the periphery to the spinal cord.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.1999.82.3.1590DOI Listing

Publication Analysis

Top Keywords

p2x2/3 receptors
12
dorsal root
8
nociceptive neurons
8
drg activated
8
p2x receptors
8
p2x receptor
8
activated atp
8
recorded 1321n1
8
1321n1 cells
8
cells expressing
8

Similar Publications

Article Synopsis
  • P2X3 and P2X2/3 receptor inhibitors are being targeted for pain relief, and this study reviews preclinical data on their effectiveness.
  • A meta-analysis of 67 articles revealed a significant overall pain reduction, particularly effective for visceral pain and mechanical hypersensitivity, with no notable differences based on sex or species.
  • The route of administration mattered: systemic methods were more effective than intrathecal, while intracerebroventricular methods worsened pain; overall, further clinical research is needed to translate these findings into treatments.
View Article and Find Full Text PDF
Article Synopsis
  • P2X receptors are important for sensory signaling and pain, functioning as cation channels activated by ATP, with their activation affected by Mg concentration and the binding of different ATP derivatives.
  • New fluorescently labelled ATP derivatives allow researchers to study how these receptors respond differently to various ligands, highlighting unique behaviors among P2X2, P2X3, and P2X2/3 receptors.
  • The research indicates that while magnesium influences P2X receptor activation, it still maintains strong binding, suggesting complex interactions that are critical for understanding the receptor's role in cellular signaling.
View Article and Find Full Text PDF

Aims: We report on investigations exploring the P2X3-receptor antagonist filapixant's effect on taste perception and cough-reflex sensitivity and describe its pharmacokinetics, including its CYP3A4-interaction potential.

Methods: In a randomized, placebo-controlled, double-blind study, 3 × 12 healthy men (18-45 years) were assigned (3:1) to filapixant (20, 80 or 250 mg by mouth) or placebo twice daily over 2 weeks. A single dose of midazolam (1 mg), a CYP3A4 substrate, was administered with and without filapixant.

View Article and Find Full Text PDF

Background And Purpose: The P2X3 receptor, a trimeric ionotropic purinergic receptor, has emerged as a potential therapeutic target for refractory chronic cough (RCC). Nevertheless, gefapixant/AF-219, the only marketed P2X3 receptor antagonist, might lead taste disorders by modulating the human P2X2/3 (hP2X2/3) heterotrimer. Hence, in RCC drug development, compounds exhibiting strong affinity for the hP2X3 homotrimer and a weak affinity for the hP2X2/3 heterotrimer hold promise.

View Article and Find Full Text PDF

Traditional Chinese medicine alleviating neuropathic pain targeting purinergic receptor P2 in purinergic signaling: A review.

Brain Res Bull

November 2023

Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China. Electronic address:

Past studies have suggested that Chinese herbal may alleviate neuropathic pain, and the mechanism might target the inhibition of purinergic receptor P2. This review discusses whether traditional Chinese medicine target P2 receptors in neuropathic pain and its mechanism in order to provide references for future clinical drug development. The related literatures were searched from Pubmed, Embase, Sinomed, and CNKI databases before June 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!