Sulfate is both a substrate and an activator of the voltage-dependent anion channel of Arabidopsis hypocotyl cells.

Plant Physiol

Institut des Sciences Végétales, Centre National de la Recherche Scientifique, Unité Propre de Recherche 40, Avenue de la Terrasse, 91198 Gif sur Yvette cedex, France.

Published: September 1999

On the basis of the anion content of in vitro-cultured Arabidopsis plantlets, we explored the selectivity of the voltage-dependent anion channel of the plasma membrane of hypocotyl cells. In the whole-cell configuration, substitution of cytosolic Cl(-) by different anions led to the following sequence of relative permeabilities: NO(3)(-) (2.6) >/= SO(4)(2-) (2.0) > Cl(-) (1.0) > HCO(3)(-) (0.8) >> malate(2-) (0.03). Large whole-cell currents were measured for NO(3)(-) and SO(4)(2-), about five to six times higher than the equivalent Cl(-) currents. Since SO(4)(2-) is usually considered to be a weakly permeant or non-permeant ion, the components of the large whole-cell current were explored in more detail. Aside from its permeation through the channel with a unitary conductance, about two-thirds that of Cl(-), SO(4)(2-) had a regulatory effect on channel activity by preventing the run-down of the anion current both in the whole-cell and the outside-out configuration, increasing markedly the whole-cell current. The fact that the voltage-dependent plasma membrane anion channel of hypocotyl cells can mediate large NO(3)(-) and SO(4)(2-) currents and is regulated by nucleotides favors the idea that this anion channel can contribute to the cellular homeostasis of important metabolized anions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC59375PMC
http://dx.doi.org/10.1104/pp.121.1.253DOI Listing

Publication Analysis

Top Keywords

anion channel
16
hypocotyl cells
12
voltage-dependent anion
8
plasma membrane
8
large whole-cell
8
no3- so42-
8
whole-cell current
8
anion
6
channel
6
whole-cell
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!