The simian immunodeficiency virus envelope glycoprotein contains two epitopes presented by the Mamu-A*01 class I molecule.

J Virol

Children's Research Institute, Children's Hospital, Inc., Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio, USA.

Published: October 1999

Cytotoxic T lymphocyte (CTL) responses against the simian immunodeficiency virus (SIV) envelope and Gag proteins were monitored in a Mamu-A*01-positive rhesus macaque infected with SIVsmE660. Peripheral blood mononuclear cells (PBMC) cultured with synthetic peptides spanning the entire gp160 and Gag coding region recognized a total of three epitopes. One located in Gag was identified as the previously described Mamu-A*01-restricted p11cC-->M epitope (CTPYDINQM). The other two epitopes, designated p15m and p54m, were located in the gp160 envelope protein. Both were nine amino acids in length and were predicted to bind Mamu-A*01 because they contained proline and leucine residues at positions 3 and 9, respectively. Indeed, expression of this class I major histocompatibility complex molecule was required for target cell recognition by envelope-specific CD8(+) T cells directed against both epitopes. These Mamu-A*01-restricted epitopes in the SIV envelope will be useful for monitoring immune responses in vaccinated or infected animals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC112819PMC
http://dx.doi.org/10.1128/JVI.73.10.8035-8039.1999DOI Listing

Publication Analysis

Top Keywords

simian immunodeficiency
8
immunodeficiency virus
8
siv envelope
8
epitopes
5
envelope
4
virus envelope
4
envelope glycoprotein
4
glycoprotein epitopes
4
epitopes presented
4
presented mamu-a*01
4

Similar Publications

Plasma galectin-9 levels correlate with blood monocyte turnover and predict simian/human immunodeficiency virus disease progression.

Transl Med Commun

January 2024

Department of Anatomy, Physiology, & Cell Biology, School of Veterinary Medicine, and California National Primate Research Center, University of California, Davis, County Road 98 & Hutchison Drive, Davis, CA, USA.

Background: Late-stage human immunodeficiency virus (HIV) infection is typically characterized by low CD4 + T-cell count. We previously showed that profound changes in the monocyte turnover (MTO) rate in rhesus macaques infected by the simian immunodeficiency virus (SIV) outperforms declining CD4 + T-cell counts in predicting rapid health decline associated with progression to terminal disease. High MTO is associated with increased tissue macrophage death.

View Article and Find Full Text PDF

The membrane-proximal external region (MPER) of the HIV-1 envelope is a target for broadly neutralizing antibodies (bnAbs), and vaccine-elicited MPER-directed antibodies have recently been reported from a human clinical trial. In this study, we sought to identify MPER-directed nAbs in simian immunodeficiency virus (SIV)-infected rhesus macaques. We isolated four lineages of SIV MPER-directed nAbs from two SIV-infected macaques.

View Article and Find Full Text PDF

Introduction: Rhesus macaques have long been a focus of research for understanding immune responses to human pathogens due to their close phylogenetic relationship with humans. As rhesus macaque antibody germlines show high degrees of polymorphism, the spectrum of database-covered genes expressed in individual macaques remains to be determined.

Methods: Here, four rhesus macaques infected with SHIV became a study of interest because they developed broadly neutralizing antibodies against HIV-1.

View Article and Find Full Text PDF

Purpose Of Review: Women are underrepresented in HIV infection and prevention research despite making up half of people living with HIV. The female genital tract (FGT) serves as a primary site of HIV acquisition, but gaps in knowledge remain regarding protective innate immune mechanisms. Innate lymphoid cells are tissue-resident cells involved in mucosal barrier maintenance and protection, and innate lymphoid cells (ILCs) are altered during chronic HIV infection.

View Article and Find Full Text PDF

Purpose Of Review: Typically, both HIV-infected humans and simian immunodeficiency virus (SIV)-infected Asian nonhuman primates (NHPs) eventually progress to AIDS, while African NHPs that are natural hosts of SIV do not, in spite of life-long, high levels of viral replication. Lack of disease progression in African NHPs is not due to some adaptation by the virus, but rather to host adaptations to the virus. Central to these adaptations is maintenance of the gut integrity during acute viral replication and inflammation, which allows natural hosts to avoid the chronic inflammation characteristic to pathogenic HIV/SIV infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!