Four erythroid-specific DNase I-hypersensitive sites at the 5'-end of the beta-globin locus confer high-level transcription to the beta-globin genes. To identify coactivators that mediate long-range transactivation by this locus control region (LCR), we assessed the influence of E1A, an inhibitor of the CBP/p300 histone acetylase, on LCR function. E1A strongly inhibited transactivation of Agamma- and beta-globin promoters by the HS2, HS2-HS3, and HS1-HS4 subregions of the LCR in human K562 and mouse erythroleukemia cells. Short- and long-range transactivation mediated by the LCR were equally sensitive to E1A. The E1A sensitivity was apparent in transient and stable transfection assays, and E1A inhibited expression of the endogenous gamma-globin genes. Only sites for NF-E2 within HS2 were required for E1A sensitivity in K562 cells, and E1A abolished transactivation mediated by the activation domain of NF-E2. E1A mutants defective in CBP/p300 binding only weakly inhibited HS2-mediated transactivation, whereas a mutant defective in retinoblastoma protein binding strongly inhibited transactivation. Expression of CBP/p300 potentiated HS2-mediated transactivation. Moreover, expression of GAL4-CBP strongly increased transactivation of a reporter containing HS2 with a GAL4 site substituted for the NF-E2 sites. Thus, we propose that a CBP/p300-containing coactivator complex is the E1A-sensitive factor important for LCR function.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.274.38.26850DOI Listing

Publication Analysis

Top Keywords

long-range transactivation
12
transactivation
9
beta-globin locus
8
locus control
8
control region
8
e1a
8
lcr function
8
e1a inhibited
8
inhibited transactivation
8
transactivation mediated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!