Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently, the human orthologue to the cell cycle checkpoint genes rad17 (Schizosaccharomyces pombe) and RAD24 (Saccharomyces cerevisiae), called HRAD17, has been isolated and localized to chromosome 4. Independently, we have isolated the HRAD17 transcript and mapped it to chromosome 5q13 between the CCNB1 and BTF2p44cen genes. Furthermore, we have identified the complete exon-intron structure of HRAD17. The gene is organized into 14 exons, the translation initiation site lies within exon 2, and the stop codon within exon 14. Two further HRAD17 pseudogenes, HRAD17P1 and HRAD17P2, were identified on chromosomes 7p21 and 13q14.3, respectively, encompassing exons 3-14 and bearing 84% and 93% homology, respectively. Additionally, we have isolated the coding region of the mouse orthologue, Mrad17, and mapped it on chromosome 13 between Ccnb1 and Btf2p44, the same two genes between which it maps in human. The predicted Mrad17 polypeptide encompasses 687 amino acids and shows 89% similarity to HRAD17. Both genes are most highly expressed in testis compared to all other tissues, as shown by Northern blot hybridization. Histological studies, based on in situ hybridization with radioactively labeled antisense HRAD17 riboprobes, showed a strong expression within the germinal epithelium of the seminiferous tubuli in normal testis whereas in testicular tumors (seminomas) only weak, diffuse signals were seen. In light of the known function of the yeast orthologue at meiotic and mitotic checkpoints, as well as the strong expression in testis and weak expression in seminomas, we suggest a putative involvement of HRAD 17 in testicular tumorigenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s004399900067 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!