The role of Mycobacterium avium isolates in modulating human immunodeficiency virus type 1 (HIV-1) replication was examined by use of an in vitro, resting T cell system. Two human clinical isolates (serotypes 1 and 4) but not an environmental M. avium isolate (serotype 2) enhanced HIV-1 replication. The M. avium-induced HIV-1 replication was not associated with cell activation or differential cytokine production or utilization. Addition of matrix metalloproteinase (MMP) inhibitors and their in vivo regulators, tissue inhibitors of metalloproteinases-1 and -2, abrogated M. avium-induced HIV-1 replication 80%-95%. The MMP inhibitors did not have any effect on the HIV-1 protease activity, suggesting that they may affect cellular processes. Furthermore, MMP-9 protein was differentially expressed after infection with clinical M. avium isolates and paralleled HIV-1 p24 production. Collectively, these data suggest that M. avium-induced HIV-1 replication is mediated, in part, through the induction of MMP-9.

Download full-text PDF

Source
http://dx.doi.org/10.1086/314992DOI Listing

Publication Analysis

Top Keywords

hiv-1 replication
20
avium isolates
12
avium-induced hiv-1
12
human immunodeficiency
8
immunodeficiency virus
8
virus type
8
mycobacterium avium
8
mmp inhibitors
8
hiv-1
7
replication
6

Similar Publications

Second-generation integrase strand transfer inhibitors (INSTIs) are strongly recommended for people living with HIV-1 (PLWH). The emergence of resistance to second-generation INSTIs has been infrequent and has not yet been a major issue in high-income countries. However, the delayed rollouts of these INSTIs in low- to middle-income countries during the COVID-19 pandemic combined with increased transmission of drug-resistant mutants worldwide are leading to an increase in INSTI resistance.

View Article and Find Full Text PDF

Treatment options for viral infections are limited and viruses have proven adept at evolving resistance to many existing therapies, highlighting a significant vulnerability in our defenses. In response to this challenge, we explored the modulation of cellular RNA metabolic processes as an alternative paradigm to antiviral development. Previously, the small molecule 5342191 was identified as a potent inhibitor of HIV-1 replication by altering viral RNA accumulation at doses that minimally affect host gene expression.

View Article and Find Full Text PDF

Host RNA-Binding Proteins as Regulators of HIV-1 Replication.

Viruses

December 2024

Laboratory of Molecular and Cellular Virology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile.

RNA-binding proteins (RBPs) are cellular factors involved in every step of RNA metabolism. During HIV-1 infection, these proteins are key players in the fine-tuning of viral and host cellular and molecular pathways, including (but not limited to) viral entry, transcription, splicing, RNA modification, translation, decay, assembly, and packaging, as well as the modulation of the antiviral response. Targeted studies have been of paramount importance in identifying and understanding the role of RNA-binding proteins that bind to HIV-1 RNAs.

View Article and Find Full Text PDF

Equine Infectious Anemia Virus Cellular Partners Along the Viral Cycle.

Viruses

December 2024

ANSES Animal Health Laboratory, PhEED Unit, 14430 Goustranville, France.

Equine infectious anemia virus (EIAV) is the simplest described within the family, related to the human immunodeficiency viruses (HIV-1 and HIV-2). There is an important interplay between host cells and viruses. Viruses need to hijack cellular proteins for their viral cycle completion and some cellular proteins are antiviral agents interfering with viral replication.

View Article and Find Full Text PDF

Human Immunodeficiency Virus (HIV) proviral reservoirs are cells that harbor integrated HIV proviral DNA within their nuclear genomes. These cells form a heterogeneous group, represented by peripheral blood mononuclear cells (PBMCs), tissue-resident lymphoid and monocytic cells, and glial cells of the central nervous system. The importance of studying the properties of proviral reservoirs is connected with the inaccessibility of integrated HIV proviral DNA for modern anti-retroviral therapies (ARTs) that block virus reproduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!