Plasticity of 5-hydroxytryptamine(1B) receptors during postnatal development in the rat visual cortex.

Int J Dev Neurosci

Histologia, Facultad de Medicina, Universidad de Valparaiso, P. Ancha-Valparaiso, Chile.

Published: July 1999

The distribution of 5-hydroxytryptamine1A and 5-hydroxytryptamine1B receptors in the visual cortex was studied by quantitative autoradiography during postnatal development. Overall, receptor densities increased throughout development, but exhibited regional rearrangements, particularly in the case of 5-hydroxytryptamine1B receptors. Neonatal treatment with 5,7-dihydroxytryptamine, which causes selective degeneration of serotoninergic neurons, had no effect on the density of 5-hydroxytryptamine1A receptors in the visual cortex. However, a transient increase in 5-hydroxytryptamine1B at postnatal days 10-12 was observed after this treatment, suggesting a regulation of postsynaptic receptors. Neonatal enucleation resulted in a marked increase in 5-hydroxytryptamine1B binding sites in all layers of the visual cortex by P16, whereas it had no effect upon 5-hydroxytryptamine1A binding sites. These results show that both receptor subtypes do not exhibit striking transient features in the visual cortex during postnatal development, but rather undergo discrete reorganizations. 5-Hydroxytryptamine1B receptors show changes in density after either neonatal degeneration of serotoninergic neurons or enucleation, indicating that the serotoninergic system involving this receptor subtype can exhibit some postnatal plasticity in the visual cortex.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0736-5748(99)00039-8DOI Listing

Publication Analysis

Top Keywords

visual cortex
24
5-hydroxytryptamine1b receptors
16
postnatal development
12
receptors visual
8
receptors neonatal
8
degeneration serotoninergic
8
serotoninergic neurons
8
increase 5-hydroxytryptamine1b
8
binding sites
8
receptors
6

Similar Publications

Exploring imitation of within hand prehensile object manipulation using fMRI and graph theory analysis.

Sci Rep

January 2025

Support Centre for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.

This study aims to establish an imitation task of multi-finger haptics in the context of regular grasping and regrasping processes during activities of daily living. A video guided the 26 healthy, right-handed volunteers through the three phases of the task: (1) fixation of a hand holding a cuboid, (2) observation of the sensori-motor manipulation, (3) imitation of that motor action. fMRI recorded the task; graph analysis of the acquisitions revealed the associated functional cerebral connectivity patterns.

View Article and Find Full Text PDF

Reduced cerebral blood flow occurs early in the development of Alzheimer's disease (AD), but the factors producing this reduction are unknown. Here, we ask whether genetic and lifestyle risk factors for AD-the ε4 allele of the Apolipoprotein (APOE) gene, and physical activity-can together produce this reduction in cerebral blood flow which leads eventually to AD. Using in vivo two-photon microscopy and haemodynamic measures, we record neurovascular function from the visual cortex of physically active or sedentary mice expressing APOE3 and APOE4 in place of murine APOE.

View Article and Find Full Text PDF

Effects of psilocybin on mouse brain microstructure.

AJNR Am J Neuroradiol

January 2025

From the Department of Radiology (P.C.F., A.P.S., J.J.Y.).

Background And Purpose: There is surging interest in the therapeutic potential of psychedelic compounds like psilocybin in the treatment of psychiatric illnesses like major depressive disorder (MDD). Recent studies point to the rapid antidepressant effect of psilocybin; however, the biological mechanisms underlying these differences remain unknown. This study determines the feasibility of using diffusion MRI to characterize and define the potential spatiotemporal microstructural differences in the brain following psilocybin treatment in C57BL/6J male mice.

View Article and Find Full Text PDF

ECoGScope: An integrated platform for real-time Electrophysiology and fluorescence imaging.

Biosens Bioelectron

January 2025

Emotion, Cognition, & Behavior Research Group, Korea Brain Research Institute 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea. Electronic address:

In this study, we present ECoGScope, a versatile neural interface platform designed to integrate multiple functions for advancing neural network research. ECoGScope combines an electrocorticography (ECoG) electrode array with a commercial microendoscope, enabling simultaneous recording of ECoG signals and fluorescence imaging. The electrode array, constructed from highly flexible and transparent polymers, ensures conformal contact with the brain surface, allowing unobstructed optical monitoring of neural activity alongside electrophysiological recordings.

View Article and Find Full Text PDF

Background: Acupuncture has been demonstrated to have a promising effect on Alzheimer's disease (AD), but the underlying neural mechanisms remain unclear. The retrosplenial cortex (RSC) is one of the earliest brain regions affected in AD, and changes in its functional connectivity (FC) are reported to underlie disease-associated memory impairment. The aim of this study was to examine the effect of acupuncture on FC with the RSC in patients with AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!