Developmental dysphasia, a severe childhood learning disorder, is thought to result from problems in hemispheric specialization involving both left and right cerebral hemispheres. Regional cerebral blood flow (rCBF) was measured at rest and during stimulation of both hemispheres independently: dichotic listening for the left, dichaptic palpation for the right. Eight right-handed boys with expressive dysphasia, aged 8 to 12 years, were investigated using SPECT and compared with eight right-handed age-matched boys with Duchenne muscular dystrophy with reading disorders but normal speech. rCBF values at rest were also compared with those of five right-handed age-matched normal boys. In the dichotic task, children with dysphasia differed from children with dystrophia by failure to increase rCBF in the left hemisphere, in Broca's area, but rCBF increased in the right hemisphere, in the region homologous to Broca's area. In the dichaptic task, rCBF increased bilaterally for children with dysphasia whereas in children with dystrophia rCBF increased only in the right hemisphere. At rest the physiological asymmetry was reversed in favor of the right hemisphere in all areas except Broca's area. Surprisingly, the same applied at rest and for all areas in children with dystrophia. These results confirm that functional specialization of both hemispheres is impaired in developmental dysphasia. Moreover, they suggest that learning disabilities associated with Duchenne muscular dystrophy could also be related to abnormal hemispheric specialization.

Download full-text PDF

Source
http://dx.doi.org/10.1017/s0012162299001139DOI Listing

Publication Analysis

Top Keywords

hemispheric specialization
12
children dysphasia
12
children dystrophia
12
broca's area
12
rcbf increased
12
developmental dysphasia
8
compared right-handed
8
right-handed age-matched
8
duchenne muscular
8
muscular dystrophy
8

Similar Publications

Background And Purpose: Endovascular thrombectomy (EVT) for acute ischemic stroke (AIS) with M2 segment occlusion of the middle cerebral artery (MCA) is debatable. This study assessed the efficacy, safety, and functional outcomes of EVT in M2 occlusion patients, examining differences in outcomes based on the dominance of the occluded segment (DomM2 vs. Non-DomM2).

View Article and Find Full Text PDF

The human brain continuously integrates information across its two hemispheres to construct a coherent representation of the perceptual world. Characterizing how visual information is represented in each hemisphere over time is crucial for understanding how hemispheric transfer contributes to perception. Here, we investigated information processing within each hemisphere over time and the degree to which it is distinct or duplicated across hemispheres.

View Article and Find Full Text PDF

Introduction: This investigation aimed to explore interhemispheric interactions in visual word processing with a focus on proficiency development. Given the asymmetrical specialization in visual word processing across hemispheres, the study hypothesized that the primary hemisphere predominantly regulates interhemispheric interactions. The familiarity effect, serving as a measure of visual word processing proficiency, was examined to determine how proficiency influences these interactions.

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) has the potential to modulate spatial attention by enhancing the activity in one hemisphere relative to the other. This study aims to inform neurorehabilitation strategies for spatial attention disorders by investigating the impact of tDCS on the performance of healthy participants. Unlike prior research that focused on visual detection, we extended the investigation to visual search and visual imagery using computerized neuropsychological tests.

View Article and Find Full Text PDF

Imagine going left versus imagine going right: whole-body motion on the lateral axis.

Sci Rep

December 2024

Creative Robotics Lab, UNSW, Sydney, 2021, Australia.

Unlike the conventional, embodied, and embrained whole-body movements in the sagittal forward and vertical axes, movements in the lateral/transversal axis cannot be unequivocally grounded, embodied, or embrained. When considering motor imagery for left and right directions, it is  assumed that participants have underdeveloped representations due to a lack of familiarity with moving along the lateral axis. In the current study, a 32 electroencephalography (EEG) system was used to identify the oscillatory neural signature linked with lateral axis motor imagery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!