We investigated the effect of drug physico-chemical properties on the release of basic drugs from poly(L-lactic acid) (P(L)LA) cylindrical matrices (rods; 10 mmx1 mm diameter). All the rods were revealed to exhibit two-stage diffusion-controlled release profiles resulting from the transformation of P(L)LA from an amorphous to a semicrystalline state in aqueous medium. On the assumption that interactions between polymer carboxyl residues and basic drugs control the drug release rate, we evaluated the strength of these interactions by the drug partition between the polymer and the aqueous medium. In the first release stage, the drugs diffused through the swollen polymer matrix. The polymer-drug interactions shielded the polymer terminal carboxyl residues, thereby resulting in a less hydrated matrix and consequent diminishment of drug diffusion. In the second release stage, the drugs diffused through the water-filled micropores which had developed as a result of polymer crystallization. The stronger polymer-basic drug interactions reduced the drug diffusion rate by decreasing not only the porosity of the matrix, but also the drug partition to the water-filled micropores. It was also found that the fractional drug release rate in the second stage increased with drug content of the rod at the pH where both the polymer carboxyl residues and the drugs were ionized. Since the polymer-drug interactions must be close to saturation with increasing drug content, we believe this result to be due to an increase in the ratio of the drug partition to the water-filled micropores.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0168-3659(99)00149-2 | DOI Listing |
Drug Res (Stuttg)
January 2025
Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang China.
Fragment based novel drug identification and its validation through use of molecular dynamics and simulations.Comparing primary microcephaly genes with glioblastoma expression profiles reveals potential oncogenes, with proteins that support growth and survival in neural stem/progenitor cells likely retaining critical roles in glioblastoma. Identifying such proteins in familial and congenital microcephalic disorders offers promising targets for brain tumor therapy.
View Article and Find Full Text PDFChemistry
January 2025
Tohokudai: Tohoku Daigaku, Interdisciplinary Sciences, JAPAN.
Chemoselective modification of alkylalcohols (e.g., serine residues) on proteins has been a daunting challenge especially in aqueous media.
View Article and Find Full Text PDFCurr Drug Metab
January 2025
College of Pharmacy, Dalian Medical University, Liaoning Dalian, China.
Background: Human cytochrome P450 1B1 (CYP1B1) is an extrahepatic enzyme that is overexpressed in many tumors and is associated with tumor development and acquired resistance. Few studies have reported that anthraquinone compounds have inhibitory activity against the CYP1B1 enzyme. Cassiae semen (Leguminosae) is a well-known traditional Chinese medicine containing more than 70 compounds.
View Article and Find Full Text PDFSignal Transduct Target Ther
January 2025
State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China.
The excessive cytokine release and limited persistence represent major challenges for chimeric antigen receptor T (CAR-T) cell therapy in diverse tumors. Conventional CARs employ an intracellular domain (ICD) from the ζ subunit of CD3 as a signaling module, and it is largely unknown how alternative CD3 chains potentially contribute to CAR design. Here, we obtained a series of CAR-T cells against HER2 and mesothelin using a domain comprising a single immunoreceptor tyrosine-based activation motif from different CD3 subunits as the ICD of CARs.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France.
Tetramethylammonium (TMA) is a ubiquitous cationic motif in biochemistry, found in the charged choline headgroup of membrane phospholipids and in tri-methylated lysine residues, which modulates histone-DNA interactions and impacts epigenetic mechanisms. TMA interactions with anionic species, particularly carboxylate groups of amino acid residues and extracellular sugars, are of substantial biological relevance, as these interactions mediate a wide range of cellular processes. This study investigates the molecular interactions between TMA and acetate, representing carboxylate-containing groups, using neutron scattering experiments complemented by force fields and molecular dynamics (MD) simulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!