Eight continuous insect cell lines were tested for susceptibility to the delta-endotoxins of several lepidopteran-active strains and cloned-gene products of Bacillus thuringiensis. The assays were performed on cells suspended in agarose gel, which allowed the toxins activated at pH 10.5 to be applied directly in a high-pH buffer without causing solvent toxicity to the cells. The responses of the cell lines to the various toxins produced activity spectra that were used to identify functionally similar and dissimilar toxin proteins. IPRI-CF-1 and FPMI-MS-5, derived from neonate larvae of Choristoneura fumiferana and Manduca sexta, respectively, exhibited the greatest sensitivity to the toxins tested, whereas B. thuringiensis subsp. entomocidus had the broadest in vitro host range. Analysis of activity spectra led to the identification of the particular Cry protein that was responsible for the broad toxicity of this subspecies and demonstrated a distinct difference in toxin composition between two strains of subsp. sotto. The identical spectra observed for subsp. kurstaki HD-1 and NRD-12 is consistent with insect bioassay data obtained previously by other workers and supports the conclusion that there is virtually no difference in activity between these two strains. The in vitro assay system, referred to as the "lawn assay" and used to test B. thuringiensis activated toxins against insect cell lines, is particularly useful in mode-of-action studies and as a rapid, preliminary test for the presence of specific cytolytic proteins, rather than as a method for screening toxins of wild-type strains for insecticidal activity. The response of cells in vitro to B. thuringiensis toxins is often very different from that of the insect from which the cells were derived.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11626-999-0075-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!