Recent selection on synonymous codon usage in Drosophila.

J Mol Evol

Department of Biology, Radford University, Radford, VA 24142, USA.

Published: September 1999

Evidence from a variety of sources indicates that selection has influenced synonymous codon usage in Drosophila. It has generally been difficult, however, to distinguish selection that acted in the distant past from ongoing selection. However, under a neutral model, polymorphisms usually reflect more recent mutations than fixed differences between species and may, therefore, be useful for inferring recent selection. If the ancestral state is preferred, selection should shift the frequency distribution of derived states/site toward lower values; if the ancestral is unpreferred, selection should increase the number of derived states/site. Polymorphisms were classified as ancestrally preferred or unpreferred for several genes of D. simulans and D. melanogaster. A computer simulation of coalescence was employed to derive the expected frequency distributions of derived states/site under various modifications of the Wright-Fisher neutral model, and distributions of test statistics (t and Mann-Whitney U) were derived by appropriate sampling. One-tailed tests were applied to transformed frequency data to assess whether the two frequency distributions deviated from neutral expectations in the direction predicted by selection on codon usage. Several genes from D. simulans appear to be subject to recent selection on synonymous codons, including one gene with low codon bias, esterase-6. Selection may also be acting in D. melanogaster.

Download full-text PDF

Source
http://dx.doi.org/10.1007/pl00006557DOI Listing

Publication Analysis

Top Keywords

codon usage
12
derived states/site
12
selection
10
selection synonymous
8
synonymous codon
8
usage drosophila
8
neutral model
8
genes simulans
8
frequency distributions
8
codon
4

Similar Publications

SARS-CoV-2 CoCoPUTs: analyzing GISAID and NCBI data to obtain codon statistics, mutations, and free energy over a multiyear period.

Virus Evol

January 2025

Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA.

A consistent area of interest since the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been the sequence composition of the virus and how it has changed over time. Many resources have been developed for the storage and analysis of SARS-CoV-2 data, such as GISAID (Global Initiative on Sharing All Influenza Data), NCBI, Nextstrain, and outbreak.info.

View Article and Find Full Text PDF

The growing demand for biological products drives many efforts to maximize expression of heterologous proteins. Advances in high-throughput sequencing can produce data suitable for building sequence-to-expression models with machine learning. The most accurate models have been trained on one-hot encodings, a mechanism-agnostic representation of nucleotide sequences.

View Article and Find Full Text PDF

Fitness and adaptive evolution of a Rhodococcus sp. harboring dioxin-catabolic plasmids.

World J Microbiol Biotechnol

January 2025

Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, China.

Catabolic plasmids are critical factors in the degradation of recalcitrant xenobiotics, such as dioxins. Understanding the persistence and evolution of native catabolic plasmids is pivotal for controlling their function in microbial remediation. Here, we track the fitness and evolution of Rhodococcus sp.

View Article and Find Full Text PDF

Decoding Codon Bias: The Role of tRNA Modifications in Tissue-Specific Translation.

Int J Mol Sci

January 2025

Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.

Article Synopsis
  • The tRNA epitranscriptome plays a crucial role in regulating mRNA translation, but our understanding of its tissue-specific functions is limited.
  • Analyzing seven mouse tissues revealed unique patterns of tRNA modifications, with queuosine (Q) being prominent in the brain and mitochondrial modifications in the heart.
  • By testing a codon-mutated EGFP, researchers found that protein levels varied based on tissue type, highlighting the potential for tailoring gene therapies to enhance their effectiveness in specific tissues or conditions.
View Article and Find Full Text PDF

is a fully mycoheterotrophic orchid that lacks both leaves and roots, belonging to the genus in the subtribe Calypsoinae. In this study, we assembled and annotated its mitochondrial genome (397,867 bp, GC content: 42.70%), identifying 55 genes, including 37 protein-coding genes (PCGs), 16 tRNAs, and 2 rRNAs, and conducted analyses of relative synonymous codon usage (RSCU), repeat sequences, horizontal gene transfers (HGTs), and gene selective pressure (dN/dS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!