In macaque monkey, frontal and parasagittal brain sections were stained with SMI-32, an antibody directed against a nonphosphorylated neurofilament protein that labels pyramidal cells. The goal of this investigation was to find reliable criteria with which to draw the border between the motor (M1) and premotor (PM) cortex and delineate subdivisions within the lateral PM. Two-dimensional reconstruction of the staining patterns was also performed by flattening the series of frontal sections. The distribution of SMI-32 immunoreactivity in layers III and V of the cortex revealed the existence of three subregions in the ventral rostral PM and a clear mediolateral boundary within the dorsal PM defined by clusters of SMI-32-positive pyramidal cells in layer V. The border between M1 and PM was easily distinguished at the level of the dorsal PM by a strong loss of immunoreactive pyramidal cells in layers III and V. At the level of the ventral PM there was no clear disruption of layer V pattern, and the border was set using the pattern of layer III immunoreactivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s002210050834 | DOI Listing |
Science
January 2025
Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA.
The mechanisms by which the brain replays neural activity sequences remain unknown. Recording from large ensembles of hippocampal place cells in freely behaving rats, we observed that replay content is strictly organized over multiple timescales and governed by self-avoidance. After movement cessation, replays avoided the animal's previous path for 3 seconds.
View Article and Find Full Text PDFScience
January 2025
Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
Social animals live in groups and interact volitionally in complex ways. However, little is known about neural responses under such natural conditions. Here, we investigated hippocampal CA1 neurons in a mixed-sex group of five to 10 freely behaving wild Egyptian fruit bats that lived continuously in a laboratory-based cave and formed a stable social network.
View Article and Find Full Text PDFNat Commun
January 2025
Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA.
Apical and basal dendrites of pyramidal neurons receive anatomically and functionally distinct inputs, implying compartment-level functional diversity during behavior. To test this, we imaged in vivo calcium signals from soma, apical dendrites, and basal dendrites in mouse hippocampal CA3 pyramidal neurons during head-fixed navigation. To capture compartment-specific population dynamics, we developed computational tools to automatically segment dendrites and extract accurate fluorescence traces from densely labeled neurons.
View Article and Find Full Text PDFInnovation (Camb)
January 2025
Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada.
Synapse-specific connectivity and dynamics determine microcircuit function but are challenging to explore with classic paired recordings due to their low throughput. We therefore implemented optomapping, a ∼100-fold faster two-photon optogenetic method. In mouse primary visual cortex (V1), we optomapped 30,454 candidate inputs to reveal 1,790 excitatory inputs to pyramidal, basket, and Martinotti cells.
View Article and Find Full Text PDFJ Neurochem
January 2025
School of Life Science, Nanchang University, Nanchang, China.
Activation of the brain-penetrant beta3-adrenergic receptor (Adrb3) is implicated in the treatment of depressive disorders. Enhancing GABAergic inputs from interneurons onto pyramidal cells of prefrontal cortex (PFC) represents a strategy for antidepressant therapies. Here, we probed the effects of the activation of Adrb3 on GABAergic transmission onto pyramidal neurons in the PFC using in vitro electrophysiology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!