Background: The aim of the present study was to investigate dopamine synthesis in the brain of drug-free schizophrenic patients, not only in the striatum but also in extrastriatal areas like the prefrontal cortex, brain areas that for a long time has been in focus of interest in the pathophysiology of schizophrenia.

Methods: PET was performed in 12 drug-free (10 drug-naive) psychotic schizophrenic patients and 10 healthy volunteers matched for age and gender using 11C-labelled L-DOPA as the tracer. The time-radioactivity curve from occipital cortex (located within Brodman area 17 and 18) was used as input function to calculate L-DOPA influx rate, Ki images, that were matched to a common brain atlas. A significant overall increase of the Ki values was found in the schizophrenic group as compared with healthy controls.

Results: In particular, significantly higher Ki were found in the schizophrenic patients compared to the controls in the caudate nucleus, putamen and in parts of medial prefrontal cortex (Brod 24). The Ki value reflect an increased utilization of L-DOPA, presumably due to increased activity of the amino acid decarboxylate enzyme.

Conclusions: The results indicate that the synthesis of dopamine is elevated within the striatum and parts of medial prefrontal cortex in schizophrenia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-3223(99)00109-2DOI Listing

Publication Analysis

Top Keywords

prefrontal cortex
16
medial prefrontal
12
schizophrenic patients
12
dopamine synthesis
8
parts medial
8
cortex
5
increased dopamine
4
synthesis rate
4
rate medial
4
prefrontal
4

Similar Publications

Cognitive and neural mechanisms underlying bipolar disorder (BD) and its treatment are still poorly understood. Here we examined the role of adaptations in risk-taking using a reward-guided decision-making task. We recruited volunteers with high (n = 40) scores on the Mood Disorder Questionnaire, MDQ, suspected of high risk for bipolar disorder and those with low-risk scores (n = 37).

View Article and Find Full Text PDF

Effects of psilocybin on mouse brain microstructure.

AJNR Am J Neuroradiol

January 2025

From the Department of Radiology (P.C.F., A.P.S., J.J.Y.).

Background And Purpose: There is surging interest in the therapeutic potential of psychedelic compounds like psilocybin in the treatment of psychiatric illnesses like major depressive disorder (MDD). Recent studies point to the rapid antidepressant effect of psilocybin; however, the biological mechanisms underlying these differences remain unknown. This study determines the feasibility of using diffusion MRI to characterize and define the potential spatiotemporal microstructural differences in the brain following psilocybin treatment in C57BL/6J male mice.

View Article and Find Full Text PDF

Projection-targeted photopharmacology reveals distinct anxiolytic roles for presynaptic mGluR2 in prefrontal- and insula-amygdala synapses.

Neuron

January 2025

Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA. Electronic address:

Dissecting how membrane receptors regulate neural circuits is critical for deciphering principles of neuromodulation and mechanisms of drug action. Here, we use a battery of optical approaches to determine how presynaptic metabotropic glutamate receptor 2 (mGluR2) in the basolateral amygdala (BLA) controls anxiety-related behavior in mice. Using projection-specific photopharmacological activation, we find that mGluR2-mediated presynaptic inhibition of ventromedial prefrontal cortex (vmPFC)-BLA, but not posterior insular cortex (pIC)-BLA, connections produces a long-lasting decrease in spatial avoidance.

View Article and Find Full Text PDF

Long-term effects of social play on neural and behavioral development remain unclear. We investigated whether just 1 h of juvenile social play could rescue the effects of play deprivation on stress-related behavior and markers of neural plasticity. Syrian hamsters were reared from postnatal days 21-43 in three conditions: peer isolation, peer isolation with daily social play sessions (dyadic play), or group-housed with littermates.

View Article and Find Full Text PDF

Accurate metacognitive judgments about an individual's performance in a mental task require the brain to have access to representations of the quality and difficulty of first-order cognitive processes. However, little is known about how accurate metacognitive judgments are implemented in the brain. Here, we combine brain stimulation with functional neuroimaging to determine the neural and psychological mechanisms underlying the frontopolar cortex's (FPC) role in metacognition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!