Molecular effects of paclitaxel: myths and reality (a critical review).

Int J Cancer

Medicine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

Published: October 1999

Recent studies on paclitaxel (Taxol), a microtubule-stabilizing agent and effective anti-cancer drug, have identified numerous cellular and molecular effects, such as induction of cytokines and tumor-suppressor genes, indirect cytotoxicity due to secretion of tumor necrosis factor, vast activation of signal-transduction pathways and selective activity against cells lacking functional p53. Some of these results, including the immediate activation of signaling pathways and gene expression, have been observed only with paclitaxel concentrations 1,000-fold higher than those required for mitotic arrest and apoptosis. The effects of loss of p53 on paclitaxel cytotoxicity depend on cell type (normal murine fibroblasts vs. human cancer cells) and duration of exposure to paclitaxel; p53 status marginally affects paclitaxel sensitivity in human cancer. Although the biochemistry of mitosis and meiosis has been studied independently of research on the mechanism of action of anti-cancer drugs, it eventually provided insight into the effects of paclitaxel. For example, serine protein phosphorylation, which occurs during mitotic arrest or meiosis, explains paclitaxel-induced hyperphosphorylation of Bcl-2 and Bcl-xL. Although some observations are disputed, such mitotic arrest correlates with paclitaxel cytotoxicity, while there is currently no evidence that any paclitaxel effect at clinically relevant concentrations is independent of its tubulin-binding properties. Thus, paclitaxel exerts two types of effect: mitotic arrest with coincidental serine protein phosphorylation and cytotoxicity at clinically relevant concentrations as well as immediate activation of tyrosine kinase pathways and activation of gene expression at much higher concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(sici)1097-0215(19991008)83:2<151::aid-ijc1>3.0.co;2-5DOI Listing

Publication Analysis

Top Keywords

mitotic arrest
16
paclitaxel
10
molecular effects
8
effects paclitaxel
8
gene expression
8
paclitaxel cytotoxicity
8
human cancer
8
serine protein
8
protein phosphorylation
8
clinically relevant
8

Similar Publications

TP53 mutations are recognized to correlate with a worse prognosis in individuals with non-small cell lung cancer (NSCLC). There exists an immediate necessity to pinpoint selective treatment for patients carrying TP53 mutations. Potential drugs were identified by comparing drug sensitivity differences, represented by the half-maximal inhibitory concentration (IC50), between TP53 mutant and wild-type NSCLC cell lines using database analysis.

View Article and Find Full Text PDF

Purpose: Induction of meiotic competence is a major goal of the controlled ovarian stimulation used in ART. Do factors intrinsic to the oocyte contribute to oocyte maturation? Deletions in mtDNA accumulate in long-lived post mitotic tissues and are found in human oocytes. If oogenesis cleanses the germline of deleterious deletions in mtDNA, meiotically competent oocytes should contain lower levels of mtDNA deletions vs.

View Article and Find Full Text PDF

The synthesis of ()-1-(1,3-diphenylallyl)-1-1,2,4-triazoles and related compounds as anti-mitotic agents with activity in breast cancer was investigated. These compounds were designed as hybrids of the microtubule-targeting chalcones, indanones, and the aromatase inhibitor letrozole. : A panel of 29 compounds was synthesized and examined by a preliminary screening in estrogen receptor (ER) and progesterone receptor (PR)-positive MCF-7 breast cancer cells together with cell cycle analysis and tubulin polymerization inhibition.

View Article and Find Full Text PDF

Kojic Acid Derivative as an Antimitotic Agent That Selectively Kills Tumour Cells.

Pharmaceuticals (Basel)

December 2024

Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy.

The primary method used to pharmacologically arrest cancer development and its metastasis is to disrupt the cell division process. There are a few approaches that may be used to meet this objective, mainly through inhibiting DNA replication or mitosis. Despite intensive studies on new chemotherapeutics, the biggest problem remains the side effects associated with the inhibition of cell division in non-tumoural host cells.

View Article and Find Full Text PDF

Multiple myeloma is a clonal plasma cell (PC) dyscrasia that arises from precursors and has been studied utilizing approaches focused on CD138 cells. By combining single-cell RNA sequencing (scRNA-seq) with scB-cell receptor sequencing (scBCR-seq), we differentiate monoclonal/neoplastic from polyclonal/normal PCs and find more dysregulated genes, especially in precursor patients, than we would have by analyzing bulk PCs. To determine whether this approach can identify oncogenes that contribute to disease pathobiology, mitotic arrest deficient-2 like-1 (MAD2L1) and S-adenosylmethionine synthase isoform type-2 (MAT2A) are validated as targets with drug-like molecules that suppress myeloma growth in preclinical models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!