A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Neuroprotective effects of DETA-NONOate, a nitric oxide donor, on hydrogen peroxide-induced neurotoxicity in cortical neurones. | LitMetric

Neuroprotective effects of DETA-NONOate, a nitric oxide donor, on hydrogen peroxide-induced neurotoxicity in cortical neurones.

Neuropharmacology

Instituto de Farmacologia y Toxicologia, Consejo Superior de Investigaciones Cientificas, Facultad de Medicina, Universidad Complutense de Madrid, Spain.

Published: September 1999

Nitric oxide (NO) has been proposed to exert neuroprotective actions against oxidative damage acting directly as an antioxidant; in addition, it has also been suggested that NO might be cytoprotective by increasing cyclic GMP concentrations via activation of soluble guanylate cyclase. In this context, we have previously shown that cyclic GMP elevations confer cytoprotection against the neurotoxicity induced by SIN-1 in the presence of superoxide dismutase, conditions in which cell death seems to be a consequence of hydrogen peroxide (H2O2) formation. We have now found that H2O2 (20-100 microM) causes neurotoxicity in 1-week-old rat cortical neurones and that this effect is inhibited by the NO donor DETA-NONOate (1-10 microM). We have also found that 1H-[1,2,4]oxadiazolo[4,3,-alpha]quinoxalin-1-one (ODQ), a selective inhibitor of soluble guanylate cyclase, reverses the effect induced by DETA-NONOate, and that this action of ODQ is mimicked by 8-(4-chlorophenylthio)guanosine-3',5'-monophosphorothioate (Rp-8-pCPT-cGMPS), an inhibitor of cyclic GMP-dependent protein kinase, suggesting that the pathway affording protection involves activation of this kinase by cyclic GMP elevations. Simultaneously, ODQ inhibits the elevation of cyclic GMP concentrations induced by DETA-NONOate (1-3 microM) in cortical cells. Finally, we have also shown that the cyclic GMP mimetic, 8-bromoguanosine 3':5'-cyclic monophosphate (8-Br-cyclic GMP) inhibits the neurotoxicity induced by H2O2 (30-40 microM). Taken together, these data demonstrate that NO-induced cyclic GMP elevations confer cytoprotection against H2O2-induced neuronal cell death.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0028-3908(99)00069-6DOI Listing

Publication Analysis

Top Keywords

cyclic gmp
24
gmp elevations
12
nitric oxide
8
cortical neurones
8
gmp concentrations
8
soluble guanylate
8
guanylate cyclase
8
elevations confer
8
confer cytoprotection
8
neurotoxicity induced
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!