Tracking neuronal fiber pathways in the living human brain.

Proc Natl Acad Sci U S A

Department of Radiology and Neuroimaging Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA.

Published: August 1999

Functional imaging with positron emission tomography and functional MRI has revolutionized studies of the human brain. Understanding the organization of brain systems, especially those used for cognition, remains limited, however, because no methods currently exist for noninvasive tracking of neuronal connections between functional regions [Crick, F. & Jones, E. (1993) Nature (London) 361, 109-110]. Detailed connectivities have been studied in animals through invasive tracer techniques, but these invasive studies cannot be done in humans, and animal results cannot always be extrapolated to human systems. We have developed noninvasive neuronal fiber tracking for use in living humans, utilizing the unique ability of MRI to characterize water diffusion. We reconstructed fiber trajectories throughout the brain by tracking the direction of fastest diffusion (the fiber direction) from a grid of seed points, and then selected tracks that join anatomically or functionally (functional MRI) defined regions. We demonstrate diffusion tracking of fiber bundles in a variety of white matter classes with examples in the corpus callosum, geniculo-calcarine, and subcortical association pathways. Tracks covered long distances, navigated through divergences and tight curves, and manifested topological separations in the geniculo-calcarine tract consistent with tracer studies in animals and retinotopy studies in humans. Additionally, previously undescribed topologies were revealed in the other pathways. This approach enhances the power of modern imaging by enabling study of fiber connections among anatomically and functionally defined brain regions in individual human subjects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC17904PMC
http://dx.doi.org/10.1073/pnas.96.18.10422DOI Listing

Publication Analysis

Top Keywords

tracking neuronal
8
neuronal fiber
8
human brain
8
functional mri
8
studies humans
8
anatomically functionally
8
fiber
6
tracking
5
brain
5
fiber pathways
4

Similar Publications

Human cerebral organoids serve as a quintessential model for deciphering the complexities of brain development in a three-dimensional milieu. However, imaging these organoids, particularly when they exceed several millimeters in size, has been curtailed by the technical impediments such as phototoxicity, slow imaging speeds, and inadequate resolution and imaging depth. Addressing these pivotal challenges, our study has pioneered a high-speed scanning microscope, synergistically coupled with advanced computational image processing.

View Article and Find Full Text PDF

Window into the Brain: In Vivo Multiphoton Imaging.

ACS Photonics

January 2025

Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia 26506, United States.

Decoding the principles underlying neuronal information processing necessitates the emergence of techniques and methodologies to monitor multiscale brain networks in behaving animals over long periods of time. Novel advances in biophotonics, specifically progress in multiphoton microscopy, combined with the development of optical indicators for neuronal activity have provided the possibility to concurrently track brain functions at scales ranging from individual neurons to thousands of neurons across connected brain regions. This Review presents state-of-the-art multiphoton imaging modalities and optical indicators for in vivo brain imaging, highlighting recent advancements and current challenges in the field.

View Article and Find Full Text PDF

Microglia, the parenchymal macrophage of the central nervous system, serve crucial remodeling functions throughout development. Microglia are transcriptionally heterogenous, suggesting that distinct microglial states confer discrete roles. Currently, little is known about how dynamic these states are, the cues that promote them, or how they impact microglial function.

View Article and Find Full Text PDF

We develop a data harmonization approach for C. elegans volumetric microscopy data, consisting of a standardized format, pre-processing techniques, and human-in-the-loop machine-learning-based analysis tools. Using this approach, we unify a diverse collection of 118 whole-brain neural activity imaging datasets from five labs, storing these and accompanying tools in an online repository WormID (wormid.

View Article and Find Full Text PDF

Background: Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!