The effect of fentanyl on c-fos expression in the trigeminal brainstem complex produced by pulpal heat stimulation in the ferret.

Pain

Dental Research Center, Room 109, University of North Carolina, Chapel Hill, NC 27599-7455, USA Department of Cell and Molecular Physiology, UNC-Chapel Hill, Chapel Hill, NC 27599-7455, USA Institution of Dentistry, University of Turku, Turku, Finland.

Published: August 1999

We have previously shown that Fos-like immunoreactivity (Fos-LI) is evoked in the brainstem of ferrets following stimulation of pulpal A delta and C fibers originating from the maxillary canine. This study evaluated the effects of the mu-opioid receptor agonist fentanyl on Fos expression evoked by noxious thermal stimulation of the right maxillary and mandibular canines in pentobarbital/chloral hydrate anesthetized adult male ferrets. Pulpal heating evoked Fos expression in two distinct regions of the spinal trigeminal nuclear complex: the transitional region between subnucleus interpolaris and caudalis (Vi/Vc) and within the subnucleus caudalis (Vc). More Fos positive cells were expressed in both regions ipsilateral to the site of stimulation compared with the contralateral side (P < 0.05, ANOVA). Pretreatment with fentanyl significantly and dose-dependently suppressed the number of Fos positive cells in both the Vi/Vc transitional region and Vc (P < 0.05, ANOVA). The suppressive effect of fentanyl on Fos expression was blocked by the intravenous administration of naloxone, an opioid antagonist, indicating a specific opioid receptor effect. In addition, opioid receptor antagonism with naloxone alone enhanced Fos expression in Vi/Vc and Vc in response to heat stimulation. The administration of naloxone without heat stimulation failed to evoke Fos expression in Vi/ Vc and Vc. These findings suggest that the activation of trigeminal Vi/Vc and Vc neurons by noxious dental heat stimulation is controlled by a naloxone sensitive endogenous opioid system as indicated by Fos expression. Collectively, these results suggest that neuronal populations in Vi/Vc and Vc regions may contribute to pain responses to noxious dental stimulation and these responses can be modulated by both endogenous and exogenous opioids.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0304-3959(99)00046-9DOI Listing

Publication Analysis

Top Keywords

fos expression
24
heat stimulation
16
stimulation
8
fos
8
fentanyl fos
8
transitional region
8
fos positive
8
positive cells
8
005 anova
8
administration naloxone
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!