Autoprocessing of HIV-1 protease is tightly coupled to protein folding.

Nat Struct Biol

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.

Published: September 1999

In the Gag-Pol polyprotein of HIV-1, the 99-amino acid protease is flanked at its N-terminus by a transframe region (TFR) composed of the transframe octapeptide (TFP) and 48 amino acids of the p6pol, separated by a protease cleavage site. The intact precursor (TFP-p6pol-PR) has very low dimer stability relative to that of the mature enzyme and exhibits negligible levels of stable tertiary structure. Thus, the TFR functions by destabilizing the native structure, unlike proregions found in zymogen forms of monomeric aspartic proteases. Cleavage at the p6pol-PR site to release a free N-terminus of protease is concomitant with the appearance of enzymatic activity and formation of a stable tertiary structure that is characteristic of the mature protease as demonstrated by nuclear magnetic resonance. The release of the mature protease from the precursor can either occur in two steps at pH values of 4 to 6 or in a single step above pH 6. The mature protease forms a dimer through a four-stranded beta-sheet at the interface. Residues 1-4 of the mature protease from each subunit constitute the outer strands of the beta-sheet, and are essential for maintaining the stability of the free protease but are not a prerequisite for the formation of tertiary structure and catalytic activity. Our experimental results provide the basis for the model proposed here for the regulation of the HIV-1 protease in the viral replication cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1038/12327DOI Listing

Publication Analysis

Top Keywords

mature protease
16
tertiary structure
12
protease
10
hiv-1 protease
8
stable tertiary
8
mature
5
autoprocessing hiv-1
4
protease tightly
4
tightly coupled
4
coupled protein
4

Similar Publications

The glomerular filtration barrier (GFB) has a unique spatial structure, including porous capillary endothelial cells, glomerular basal membrane (GBM) and highly specialized podocytes. This special structure is essential for the hemofiltration process of nephrons. GBM is the central meshwork structure of GFB formed by the assembly and fusion of various extracellular matrix (ECM) macromolecules, such as laminins and collagens, which undergo isoform transformation and maturation that may require precise regulation by metalloproteinases.

View Article and Find Full Text PDF

Maturation inhibitors (MIs) block HIV-1 maturation by preventing the cleavage of the capsid protein and spacer peptide 1 (CA-SP1). Bevirimat (BVM), a first-in-class MI, displayed sub-optimal efficacy in clinical trials due to presence of SP1:V7A polymorphism in the Gag protein.This polymorphism is inherently present in HIV-1 subtype C and conferred resistance to BVM.

View Article and Find Full Text PDF

The global burden of COVID-19 continues to rise, and despite significant progress in vaccine development, there remains a critical need for effective treatments for the severe inflammation and acute lung injury associated with SARS-CoV-2 infection. In this study, we explored the antiviral properties of a plant-derived complex consisting of flavonol and hydroxyorganic acid compounds. Our research focused on the ability of the flavonol and hydroxyorganic acid complex to suppress the activity of several key proteins involved in the replication and maturation of SARS-CoV-2.

View Article and Find Full Text PDF

The three-year COVID-19 pandemic 'has' caused a wide range of medical, social, political, and financial implications. Since the end of 2020, various mutations and variations in SARS-CoV-2 strains, along with the immune escape phenomenon, have emerged. There is an urgent need to identify a relatively stable target for the development of universal vaccines and drugs that can effectively combat both SARS-CoV-2 strains and their mutants.

View Article and Find Full Text PDF

Protein homeostasis is crucial for maintaining cardiomyocyte (CM) function. Disruption of proteostasis results in accumulation of protein aggregates causing cardiac pathologies such as hypertrophy, dilated cardiomyopathy (DCM), and heart failure. Here, we identify ubiquitin-specific peptidase 5 (USP5) as a critical determinant of protein quality control (PQC) in CM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!