The shoots of the South African legume Aspalathus linearis spp. linearis (A. linearis) are used in the manufacture of an increasingly popular beverage that has acclaimed beneficial effects on health; this important export product is known as Rooibos (or Redbush) tea. Three strains of Bradyrhizobium aspalati, which are the nitrogen-fixing symbionts of Aspalathus carnosa, A. hispida and A. linearis, were tested for the production of lipo-chitin oligosaccharide signal molecules using thin-layer chromatographic analysis after induction with different inducers, including Rooibos tea extract, and radioactive labelling. Large-scale separation, using high-performance liquid chromatography, of lipo-chitin oligosaccharides from B. aspalati isolated from A. carnosa was performed for structural characterisation using fast-atom bombardment mass spectrometry and chemical modifications followed by gas chromatography-mass spectrometric analysis. The strain was shown to secrete a family of unusual lipo-chitin oligosaccharides that are highly substituted on the nonreducing-terminal residue but unsubstituted on the reducing-terminal residue. They have a backbone of three to five beta-(1-->4)-linked N-acetyl-D-glucosamine residues substituted on the nonreducing terminus with a C16:0, C16:1, C18:0, C18:1, C19:1cy, or C20:1 fatty acyl chain, and are both N-methylated and 4,6-dicarbamoylated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0008-6215(99)00083-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!