Electron-nuclear double resonance and hyperfine sublevel correlation spectroscopic studies of flavodoxin mutants from Anabaena sp. PCC 7119.

Biophys J

Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009-Zaragoza, Spain.

Published: September 1999

The influence of the amino acid residues surrounding the flavin ring in the flavodoxin of the cyanobacterium Anabaena PCC 7119 on the electron spin density distribution of the flavin semiquinone was examined in mutants of the key residues Trp(57) and Tyr(94) at the FMN binding site. Neutral semiquinone radicals of the proteins were obtained by photoreduction and examined by electron-nuclear double resonance (ENDOR) and hyperfine sublevel correlation (HYSCORE) spectroscopies. Significant differences in electron density distribution were observed in the flavodoxin mutants Trp(57) --> Ala and Tyr(94) --> Ala. The results indicate that the presence of a bulky residue (either aromatic or aliphatic) at position 57, as compared with an alanine, decreases the electron spin density in the nuclei of the benzene flavin ring, whereas an aromatic residue at position 94 increases the electron spin density at positions N(5) and C(6) of the flavin ring. The influence of the FMN ribityl and phosphate on the flavin semiquinone was determined by reconstituting apoflavodoxin samples with riboflavin and with lumiflavin. The coupling parameters of the different nuclei of the isoalloxazine group, as detected by ENDOR and HYSCORE, were very similar to those of the native flavodoxin. This indicates that the protein conformation around the flavin ring and the electron density distribution in the semiquinone form are not influenced by the phosphate and the ribityl of FMN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1300457PMC
http://dx.doi.org/10.1016/S0006-3495(99)77017-7DOI Listing

Publication Analysis

Top Keywords

flavin ring
16
electron spin
12
spin density
12
density distribution
12
electron-nuclear double
8
double resonance
8
hyperfine sublevel
8
sublevel correlation
8
flavodoxin mutants
8
anabaena pcc
8

Similar Publications

Context: Riboflavin (RF), also known as B2 vitamin, is the precursor to flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), two co-enzymes involved in many electron transport processes. Interactions of the isoalloxazine ring, common to all three compounds, are of great interest due to their biological function in flavoproteins and relevance in the transport by the carrier protein leading to development of drug delivery strategies and non-invasive diagnostics techniques. Based on protein crystallographic data, a computational investigation of the interactions in the complexes between lumiflavin, a model compound, and aromatic amino acids, tyrosine and tryptophan, was pursued with the goal of characterizing noncovalent interactions.

View Article and Find Full Text PDF

The privileged fused-ring system comprising the bicyclo[2.2.2]diazaoctane (BDO) core is prevalent in diketopiperazine (DKP) natural products with potent and diverse biological activities, with some being explored as drug candidates.

View Article and Find Full Text PDF

Altering substrate specificity of a thermostable bacterial monoamine oxidase by structure-based mutagenesis.

Arch Biochem Biophys

February 2025

Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy. Electronic address:

Bacterial monoamine oxidases (MAOs) are FAD-dependent proteins catalyzing a relevant reaction for many industrial biocatalytic applications, ranging from production of enantiomerically pure building blocks for pharmaceutical synthesis to biosensors for monitoring food and beverage quality. The thermostable MAO enzyme from Thermoanaerobacterales bacterium (MAO) is about 36 % identical to both putrescine oxidase and human MAOs and can be efficiently produced in Escherichia coli. MAO preferentially acts on n-alkyl monoamines but shows detectable activity also on polyamines and aromatic monoamines.

View Article and Find Full Text PDF

The CoA thioester of 2-(carboxymethyl)cyclohexane-1-carboxylic acid has been identified as a metabolite in anaerobic naphthalene degradation by the sulfate-reducing culture N47. This study identified and characterised two acyl-CoA dehydrogenases (ThnO/ThnT) and an intramolecular CoA-transferase (ThnP) encoded within the substrate-induced thn operon, which contains genes for anaerobic degradation of naphthalene. ThnP is a CoA transferase belonging to the family I (Cat 1 subgroup) that catalyses the intramolecular CoA transfer from the carboxyl group of 2-(carboxymethyl)cyclohexane-1-carboxyl-CoA to its carboxymethyl moiety, forming 2-carboxycyclohexylacetyl-CoA.

View Article and Find Full Text PDF

Understanding how an enzyme regulates its function through substrate or allosteric regulation is crucial for controlling metabolic pathways. Some flavin-dependent monooxygenases (FDMOs) have evolved an allosteric mechanism to produce reduced flavin while minimizing the use of NADH and the production of harmful hydrogen peroxide (HO). In this work, we investigated in-depth mechanisms of how the reductase component (C1) of -hydroxyphenylacetate (HPA) 3-hydroxylase (HPAH) from is allosterically controlled by the binding of HPA, which is a substrate of its monooxygenase counterpart (C2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!