The functional organization of the trigeminal nuclei during embryogenesis was investigated using multiple-site optical recording with a fast voltage-sensitive dye. Brainstem preparations with three classified trigeminal nerve afferents, the ophthalmic, maxillary and mandibular nerves, together with motor nerve fibers, were dissected from five- to eight-day-old chick embryos. Electrical responses evoked by trigeminal nerve stimulations were optically recorded simultaneously from many loci of the stained preparations. We identified three response areas related to the trigeminal nerve: area I, located cephalic to the level of the trigeminal ganglion; area II, located caudal to the level of the trigeminal ganglion; and area III, located at the level of the trigeminal root. The neural responses in areas I and II were evoked by ophthalmic, maxillary or mandibular nerve stimulation, while the responses in area III were detected when the stimulation was applied to the trigeminal motor nerve. In comparison with the morphology indicated by DiI labeling, the results suggest that areas I, II and III correspond to the principal sensory nucleus of the trigeminal nerve, the spinal sensory nucleus of the trigeminal nerve and the trigeminal motor nucleus, respectively. We identified two components of the optical response: a fast and a slow signal. In five-day-old preparations, fast spike-like signals related to action potentials were recorded from the three response areas. In six-day-old preparations, slow optical signals which reflect glutamate-mediated excitatory postsynaptic potentials were detected from area II only when the ophthalmic nerve was stimulated: no slow signal was evoked by maxillary or mandibular nerve stimulation. In seven- and eight-day-old preparations, slow signals were detected from both areas I and II with every nerve stimulation. These results suggest that synaptic function is first generated in the spinal trigeminal nucleus by the six-day embryonic stage, and the developmental organization of synaptic function is not the same in the three trigeminal nerves or in the two sensory nuclei. Contour line maps of the signal amplitude revealed that the size and the area of the neural responses within the trigeminal nuclei changed dramatically with development. We compared the spatial distribution and temporal dynamics of the optical signals between the ophthalmic, maxillary and mandibular nerve stimulations, and we found that somatotopic organization is less clear in a rostrocaudal/mediolateral X-Y plane, although the areas of the maxillary and mandibular nerves appeared to separate in the lateral direction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0306-4522(99)00114-1 | DOI Listing |
Exp Eye Res
January 2025
Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA. Electronic address:
Substance P (SP) expressed by corneal nerves, is an 11-amino acid long neuropeptide from the tachykinin family, encoded by the Tac1 gene, and binds to neurokinin receptors. SP overexpression is associated with various pathological responses in the cornea including vasodilation, pain, inflammation, and angiogenesis in the normally avascular tissue. This study investigates the role of neurokinin-1 receptor (NK-1R) mediated signaling in nociception, nerve regeneration, and neuronal activation following mechanical corneal injury in mice.
View Article and Find Full Text PDFInt Cancer Conf J
January 2025
Department of Respiratory Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa Japan.
Osimertinib has emerged as the standard first-line treatment for advanced non-small cell lung cancer (NSCLC) with EGFR mutations, offering improved tolerability and demonstrating superior efficacy against brain metastases in comparison with other tyrosine kinase inhibitors. The Meckel's cave is a dural recess in the posteromedial part of the middle cranial fossa that acts as a conduit for the trigeminal nerve between the anterior pontine cisterna and the cavernous sinus, and houses the Gasserian ganglion and proximal radicle of the trigeminal nerve. Trigeminal neuropathy, characterized by numbness and dysesthesia of the skin and mucous membranes of the face, poses diagnostic challenges and often requires differentiation from conditions, such as compression neuropathy, inflammation, and drug-induced reactions.
View Article and Find Full Text PDFNeurobiol Pain
December 2024
School of Medical Sciences [Neuroscience], and the Brain & Mind Centre, The University of Sydney, NSW, 2006, Australia.
Chronic neuropathic pain is a debilitating condition that results from damage to the nervous system. Current treatments are largely ineffective, with limited understanding of the underlying mechanisms hindering development of effective treatments. Preclinical models of neuropathic pain have revealed that non-neural changes are important for the development of neuropathic pain, although these data are derived almost exclusively from post-mortem histological analyses.
View Article and Find Full Text PDFJ Nippon Med Sch
January 2025
Department of Neurosurgery, Nippon Medical School.
A patient with trigeminal neuralgia due to venous compression was successfully treated by transposition achieved by drilling the suprameatal tubercle. A 53-year-old woman presented with classical trigeminal neuralgia affecting the maxillary division of the right trigeminal nerve. MRI and CT revealed a bony prominence, called the suprameatal tubercle, above the opening of the internal acoustic meatus.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China. Electronic address:
Background: Pain and disability are primary concerns for temporomandibular joint osteoarthritis (TMJOA) patients, and the efficacy of current treatments remains controversial. Overactive osteoclasts are associated with subchondral bone degeneration and pain in OA. The vacuolar H+-ATPase (V-ATPase) is crucial for differentiation and function in osteoclasts, but its role in TMJOA is not well defined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!