Sprouting of mossy fibers in the hippocampus of rats that underwent limbic epileptogenesis by amygdala kindling or kainate injection was studied at the light microscopic and ultrastructural levels by cytochemical demonstration of the enzyme 5'-nucleotidase. This adenosine-producing ectoenzyme has previously been shown to characterize malleable terminals during brain development and lesion-induced synaptogenesis, but to be otherwise associated with glial membranes. At the light microscopic level, kainate-treated but not control or kindled rats showed 5'-nucleotidase activity in the CA3 region and in the inner molecular layer of the dentate gyrus. At the ultrastructural level, in control animals, the synapses of the molecular and granular layers were enzyme negative. Only some mossy fiber boutons of the dentate hilus exhibited 5'-nucleotidase activity. In epileptic rats, synaptic labeling within the hilus appeared more intense. Moreover, 5'-nucleotidase-containing terminals within the inner molecular layer, presumably ectopic mossy fiber boutons, were found in both kindled and kainate-treated rats. It is concluded that, in both the normal and epileptic hippocampus, 5'-nucleotidase is associated with axons capable of a plastic sprouting response. The synaptic enzyme may attenuate the glutamatergic transmission of mossy fibers, in particular of the aberrant mossy fibers in epileptic rats, by producing the inhibitory neuromodulator adenosine. Alternatively, 5'-nucleotidase may influence synapse formation by its putative non-enzymatic, adhesive functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0306-4522(99)00135-9 | DOI Listing |
Epilepsy Res
January 2025
Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China. Electronic address:
Mutations in methyl CpG binding protein 2 (MeCP2) are linked to Rett syndrome, in which epilepsy is one of the most well-described disorders. However, little is known about the specific role of MeCP2 during epileptogenesis. Our previous study has demonstrated that MeCP2 has a unique control on the development of mossy fiber sprouting (MFS) in the epileptic hippocampus.
View Article and Find Full Text PDFFront Neural Circuits
January 2025
Department of Neurobiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
A strong repetitive stimulus can occasionally enhance axonal excitability, leading to the generation of afterdischarge. This afterdischarge outlasts the stimulus period and originates either from the physiological spike initiation site, typically the axon initial segment, or from ectopic sites for spike generation. One of the possible mechanisms underlying the stimulus-induced ectopic afterdischarge is the local depolarization due to accumulated potassium ions surrounding the axonal membranes of the distal portion.
View Article and Find Full Text PDFElife
January 2025
Department of Neurobiology, Harvard Medical School, Boston, United States.
Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People's Republic of China.
The dentate gyrus (DG) in hippocampus is reported to perform pattern separation, converting similar inputs into different outputs and thus avoiding memory interference. Previous studies have found that human and mice with epilepsy have significant pattern separation defects and a portion of adult-born granule cells (abGCs) migrate abnormally into the hilus, forming hilus ectopic granule cells (HEGCs). For the lack of relevant pathophysiological experiments, how HEGCs affect pattern separation remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!