Background: After the initial discovery of 1-(2-hydroxyethoxymethyl)-6-(phenylthio)thymine (HEPT) and tetrahydroimidazo[4,5,1-jk][1,4]benzodiazepin-2(1H)-one and thione (TIBO) derivatives, several other non-nucleoside reverse transcriptase (RT) inhibitors (NNRTI), including nevirapine (BI-RG-587), pyridinone derivatives (L-696,229 and L-697,661), delavirdine (U-90152), alpha-anilinophenylacetamides (alpha-APA) and various other classes of NNRTI have been described. The hallmark of NNRTI has been based on their ability to interact with a specific site ('pocket') of HIV-1 RT.
Objective: To investigate whether, in addition to HIV-1, different strains of HIV-2 (ROD and EHO) and SIV (mac251, agm3 and mndGB1) are sensitive to a selection of NNRTI i.e. delavirdine, the HEPT derivative I-EBU (MKC-442), 8-chloro-TIBO (tivirapine), alpha-APA (loviride), nevirapine and the pyridinone derivative L-697,661.
Methods And Results: The NNRTI tested inhibited the replication of the different strains of HIV-2 and SIV at micromolar concentrations. The inhibitory effects of the NNRTI on HIV-2-induced cytopathicity correlated well with their inhibitory effects on HIV-2 RT activity. Drug-resistant HIV-2 (EHO) variants containing the Ser102Leu and/or Glu219Asp mutations in their RT were selected after passaging the virus in MT-4 cells in the presence of increasing concentrations of delavirdine. The EHO virus mutants were at least 20-fold less susceptible to the antiviral effects of delavirdine. Some cross-resistance, depending on the mutant strain, was observed with the other NNRTI tested (i.e. MKC-442, tivirapine, loviride and pyridinone L-697,661).
Conclusions: Our data demonstrate that NNRTI are not exclusively specific for HIV-1 but are also inhibitory to different HIV-2 and SIV strains. These observations will have important implications for the development of new NNRTI with higher activity against both HIV-1 and HIV-2. Furthermore, in view of their anti-SIV activity, NNRTI could be evaluated further for their in vivo anti-retrovirus efficacy in non-human primate models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00002030-199908200-00006 | DOI Listing |
J Virol
December 2024
Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China.
The Vpx protein encoded by HIV-2/simian immunodeficiency virus (SIV) can antagonize the restriction of the host intrinsic restriction factor, SAMHD1, in nondividing cells by promoting its polyubiquitination and subsequent degradation, thereby facilitating viral replication and immune evasion. However, the role of deubiquitinating enzymes (DUBs) in the dynamics of virus and host remains poorly understood. Here, we demonstrate that DUB USP37 significantly reverses the Vpx-mediated degradation of SAMHD1 in various HIV-2/SIV subtypes by interacting with SAMHD1 and removing its ubiquitin chains.
View Article and Find Full Text PDFAntiviral Res
December 2024
NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China. Electronic address:
Emerging studies demonstrate that lipid conjugation is a vital strategy for designing peptide-based viral fusion inhibitors, and the so-called lipopeptides exhibit greatly improved antiviral activity. In the design of lipopeptides, a flexible linker between the peptide sequence and lipid molecule is generally required, mostly with a short polyethylene glycol or glycine-serine sequence. Very recently, we discovered that the helix-facilitating amino acid sequence "EAAAK" as a rigid linker is a more efficient method in the design of SARS-CoV-2 fusion inhibitory lipopeptides.
View Article and Find Full Text PDFAIDS Rev
November 2024
Department of Public Health, UNIR Health Sciences School, Madrid, Spain
Simian immunodeficiency viruses (SIV) infecting chimpanzees (SIVcpz) and sooty mangabeys (SIVsm) are, respectively, the biological precursors of human immunodeficiency viruses (HIV) Types 1 and 2. Former French colonies in West Africa are the regions where retroviruses first jumped from primates to humans. Ivory Coast is nowadays a country of over 29 million people, being 2% (580,000) persons living with HIV (PLWH).
View Article and Find Full Text PDFSTAR Protoc
December 2024
RocRock Biotechnology (Suzhou), Suzhou 215000, China. Electronic address:
Human-derived macrophages are notoriously difficult to infect with HIV-1-based lentiviruses, posing a limitation to the advancement of chimeric antigen receptor macrophage (CAR-M) therapy. Here, we present a protocol for generating human chimeric antigen receptor (CAR)-engineered macrophages using the viral protein Vpx (encoded by the Sooty Mangabey simian immunodeficiency virus [SIV] and HIV-2 lineages) incorporated into the lentivirus vector, which enhances infection efficiency. We describe steps for cell cultivation, lentivirus production, concentration, infection procedures, and efficiency assessments.
View Article and Find Full Text PDFInt J Mol Sci
March 2024
ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA.
Viruses provide vital insights into gene expression control. Viral transactivators, with other viral and cellular proteins, regulate expression of self, other viruses, and host genes with profound effects on infected cells, underlying inflammation, control of immune responses, and pathogenesis. The multifunctional Tat proteins of lentiviruses (HIV-1, HIV-2, and SIV) transactivate gene expression by recruiting host proteins and binding to transacting responsive regions (TARs) in viral and host RNAs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!