Thioredoxin reductases function in regulating cellular redox and function through their substrate, thioredoxin, in the proper folding of enzymes and redox regulation of transcription factor activity. These enzymes are overexpressed in certain tumors and cancer cells and down-regulated in apoptosis and may play a role in regulating cell growth. Mammalian thioredoxin reductases contain a selenocysteine residue, encoded by a UGA codon, as the penultimate carboxyl-terminal amino acid. This amino acid has been proposed to carry reducing equivalents from the active site to substrates. We report expression of a wild-type thioredoxin reductase selenoenzyme, a cysteine mutant enzyme, and the UGA-terminated protein in mammalian cells and overexpression of the cysteine mutant and UGA-terminated proteins in the baculovirus insect cell system. We show that substitution of cysteine for selenocysteine decreases enzyme activity for thioredoxin by 2 orders magnitude, and that termination at the UGA codon abolishes activity. We further demonstrate the presence of a functional selenocysteine insertion sequence element that is highly active but only moderately responsive to selenium supplementation. Finally, we show that thioredoxin reductase mRNA levels are down-regulated by other sequences in the 3'-untranslated region, which contains multiple AU-rich instability elements. These sequences are found in a number of cytokine and proto-oncogene mRNAs and have been shown to confer rapid mRNA turnover.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.274.36.25379 | DOI Listing |
Chemistry
January 2025
University of Padova: Universita degli Studi di Padova, Dipartimento di Scienze Chimiche, Via Marzolo 1, 35131, Padova, ITALY.
Chalcogenide exchange reactions are an important class of bimolecular nucleophilic substitution reactions (SN2) involving sulfur and selenium species as nucleophile, central atom, and/or leaving group, which are fundamental throughout redox biology and metabolism. While thiol-disulfide exchange reactions have been deeply investigated, those involving selenium are less understood, especially with regards to the polarised selenenyl sulfides RSe-SR' even though the directed reactivity of selenenyl sulfides is biologically crucial for selenoenzymes such as thioredoxin reductase (TrxR) and glutathione peroxidase (GPx). Synthetic methods to create asymmetric selenenyl sulfides with high regiochemical purity only emerged over the last five years; this functional group has already demonstrated powerful applications to cell biology, through probes for molecular imaging (e.
View Article and Find Full Text PDFBiotechnol Prog
January 2025
Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Variable lymphocyte receptors (VLRs) are the antigen receptors of jawless vertebrates such as lamprey. VLRs are of growing biotechnological interest for their ability to bind certain antigenic targets with higher affinity than traditional immunoglobulins. However, VLRs are disulfide-bonded proteins that are often challenging to produce requiring genetic modifications, fusion partners, non-scalable host cell lines or inclusion body formation and refolding.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile. Electronic address:
Platelet inhibition is a fundamental objective to prevent and treat thrombus formation. Platelet activation depends on mitochondrial function. This study aims to identify a new mitochondria-targeting compound with antiplatelet activity at safe concentrations in vitro.
View Article and Find Full Text PDFFront Vet Sci
January 2025
YiMin Ecological Agriculture Development Co., Ltd., Hengyang, China.
This study investigated the fructo-oligosaccharides (FOS) on growth performance and meat quality in broilers. Total 160 Xianghuang broilers aged 2 months were randomly assigned into 2 groups, CON (control), FOS (supplemented 0.5% fructo-oligosaccharides in diet).
View Article and Find Full Text PDFMol Plant
January 2025
Division of Applied Life Sciences (BK21(+)), Plant Biological Rhythm Research Center and PMBBRC, Gyeongsang National University, Jinju-52828, Korea. Electronic address:
The intricate interplay between cellular circadian rhythms, primarily manifested in the chloroplast redox oscillations-characterized by diel hyperoxidation/reduction cycles of 2-Cys Peroxiredoxins-and the nuclear transcription/translation feedback loop (TTFL) machinery within plant cells, demonstrates a remarkable temporal coherence. However, the molecular mechanisms underlying the integration of these circadian rhythms remain elusive. Here, we elucidate that the chloroplast redox protein, NADPH-dependent thioredoxin reductase type-C (NTRC), modulates the integration of the chloroplast redox rhythms and nuclear circadian clocks by regulating intracellular levels of reactive oxygen species and sucrose.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!