Relationship between bisphosphonate concentration and osteoclast activity and viability.

In Vitro Cell Dev Biol Anim

Dows Institute for Dental Research, College of Dentistry, University of Iowa, Iowa City 52242, USA.

Published: November 1999

Difluoromethylidene bisphosphonate (F2MBP) is one of the many bisphosphonates known to inhibit bone resorption in vitro and in vivo. We have developed an analytical method, employing anion exchange and postcolumn indirect fluorescence detection, by which F2MBP can be quantified in bone samples. The objective of this study was to relate the concentration of F2MBP in embryonic bones treated in organ culture to the physiological effects of the compound, such as bone resorption (i.e., the amount of 45Ca released into the medium from prelabeled bones) and viability of the osteoclast population (i.e., the incidence of abnormal osteoclasts). Osteoclasts in bones treated with F2MBP exhibited morphological features of apoptosis, such as nuclear fragmentation. Both the number and percentage of these abnormal cells increased with dose of F2MBP and duration of incubation. The decrease in normal osteoclasts was correlated with the decreased amount of 45Ca released into the medium. Bones treated with F2MBP for only the first 5 min of the 48-h incubation period had similar numbers of abnormal osteoclasts and amounts of 45Ca released, as had bones incubated with F2MBP continuously for 48 h. The uptake of F2MBP into the bone was rapid. Bones treated with F2MBP for 6 h were similar to bones treated with F2MBP for the entire 48-h incubation period, both in F2MBP concentration and the 45Ca release ratios. These relationships between concentrations of F2MBP within bone and osteoclast activity and viability implicate apoptosis in the mechanism by which this bisphosphonate inhibits bone resorption.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11626-999-0112-7DOI Listing

Publication Analysis

Top Keywords

bones treated
20
treated f2mbp
16
f2mbp
12
bone resorption
12
45ca released
12
osteoclast activity
8
activity viability
8
amount 45ca
8
released medium
8
abnormal osteoclasts
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!