Fluorescence of synthetic melanin in dimethyl sulfoxide has been excited by two-photon absorption at 800 nm, using 120 fs pulses with photon flux densities > or = 10(27) cm-2 s-1. The shortest main component of the three-exponential decay of fluorescence is 200 +/- 2 ps. The overall spectral shape is red-shifted with respect to the 400 nm excited fluorescence. Two-photon excited melanin fluorescence also has been measured from excised samples of healthy human skin tissue. Because of the selectivity of melanin excitation via resonant two-photon absorption, it is hypothesized that fluorescence excited in this way may yield information on malignant transformation.
Download full-text PDF |
Source |
---|
Bioconjug Chem
January 2025
Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
Silica nano/microparticles have generated significant interest for the past decades, emerging as a versatile material with a wide range of applications in photonic crystals, bioimaging, chemical sensors, and catalysis. This study focused on synthesizing silica nano/microparticles ranging from 20 nm to 1.2 μm using the Stöber and modified Stöber methods.
View Article and Find Full Text PDFDalton Trans
January 2025
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
Photodynamic therapy (PDT), as a non-invasive cancer treatment, offers significant advantages including high temporal-spatial selectivity, minimal surgical intervention, and low toxicity, thereby garnering considerable research interest from across the world. In this study, we have developed a series of dinuclear cyclometalated Ir(III) complexes as potential two-photon photodynamic anticancer agents. These Ir(III) complexes demonstrate significant two-photon absorption (2PA) cross-sections ( = 66-166 GM) and specifically target mitochondria.
View Article and Find Full Text PDFIn living organisms, the natural motion caused by heartbeat, breathing, or muscle movements leads to the deformation of tissue caused by translation and stretching of the tissue structure. This effect results in the displacement or deformation of the plane of observation for intravital microscopy and causes motion-induced aberrations of the resulting image data. This, in turn, places severe limitations on the time during which specific events can be observed in intravital imaging experiments.
View Article and Find Full Text PDFBiological applications using multiphoton microscopy increasingly seek a larger field of view while maintaining sufficient temporal sampling to observe dynamic biological processes. Multiphoton imaging also requires high numerical aperture microscope objectives to realize efficient non-linear excitation and collection of fluorescence. This combination of low-magnification and high-numerical aperture poses a challenge for system design.
View Article and Find Full Text PDFMetal halide perovskites have unique luminescent properties that make them an attractive alternative for high quality light-emitting devices. However, the poor stability of perovskites with many defects and the long cycle time for the preparation of perovskite nanocomposites have hindered their production and application. Here, we prepared the perovskite mesostructures by embedding MAPbBr nanocrystals in the mesopores on the surface of silica nanospheres and mixing the nanospheres with silver nanowires and poly(methyl methacrylate) (PMMA), and further explored their optical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!