The aim of the present study was to evaluate the TR146 cell culture model as an in vitro model of human buccal epithelium with respect to the permeability enhancement by different pH values, different osmolality values or bile salts. For this purpose, the increase in the apparent permeability (P(app)) of the hydrophilic marker mannitol due to exposure to solutions with pH values or osmolality values different from the physiological values was studied. As in studies with solutions of either taurocholate (TC), glycocholate (GC) or glycodeoxycholate (GDC) the results were compared to the increase in P(app) of mannitol obtained in analog studies using porcine buccal mucosa in an Ussing chamber. The effect of the exposure on the electrical resistance of the TR146 cell culture model and the porcine buccal mucosa was measured, and the degree of protein leakage due to GC exposure was investigated in the TR146 cell culture model. The porcine buccal mucosa was approximately ten times less permeable to mannitol than the TR146 cell culture model. The P(app)TC. Increased P(app) values correlated with a decrease in the electrical resistance of the TR146 cell culture model and the porcine buccal mucosa. GC was shown to induce concentration dependent protein leakage in the TR146 cell culture but only from the site of application, and the results indicate that duration of exposure further than 120 min was of minor importance. The present results indicate that the TR146 cell culture model may be a suitable in vitro model for efficacy studies and mechanistic studies of enhancers with potential use in human buccal drug delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0378-5173(99)00165-9DOI Listing

Publication Analysis

Top Keywords

tr146 cell
28
cell culture
28
culture model
24
porcine buccal
16
buccal mucosa
16
human buccal
12
values osmolality
12
osmolality values
12
model porcine
12
model
9

Similar Publications

Oral cell lysates reduce osteoclastogenesis in murine bone marrow cultures.

Cytotechnology

February 2025

Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria.

Mechanical and thermal cell damage can occur due to invasive procedures related to drilling, the insertion of dental implants, and periodontal treatments. Necrotic cells release the content of their cytoplasm and membrane fragments, thereby signaling the need for repair, which includes bone resorption by osteoclasts and inflammation. Here we screened lysates from human gingival fibroblasts, HSC2 and TR146 oral squamous carcinoma cell lines, as well as murine IDG-SW3 osteocytic and RAW264.

View Article and Find Full Text PDF

Despite MCT oil's potential antimicrobial benefits for gastrointestinal health, its effects on disrupting cariogenic pathogens on oral mucosal surfaces remain underexplored. This study evaluated the impact of MCT oil on the adhesion and invasion of and using planktonic and mucosal models. First, a planktonic model was used to assess the impact of various concentrations of MCT on the growth of and .

View Article and Find Full Text PDF

Design, additive manufacturing, and characterization of an organ-on-chip microfluidic device for oral mucosa analogue growth.

J Mech Behav Biomed Mater

December 2024

Department of Prosthodontics, Dental and Craniofacial Bioengineering and Applied Biomaterials, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece. Electronic address:

Introduction: Α customized organ-on-a-chip microfluidic device was developed for dynamic culture of oral mucosa equivalents (Oral_mucosa_chip-OMC).

Materials And Methods: Additive Manufacturing (AM) was performed via stereolithography (SLA) printing. The dimensional accuracy was evaluated via microfocus computed tomography (mCT), the surface characteristics via scanning electron microscopy (SEM), while the mechanical properties via nanoindentation and compression tests.

View Article and Find Full Text PDF

Natural Epithelial Barrier Integrity Enhancers- and Extracts.

Gels

December 2024

The Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 4070000, Israel.

Buccal drug delivery offers a promising alternative for avoiding gastrointestinal degradation and first-pass metabolism. However, enhancing the buccal epithelial barrier's permeability remains challenging. This study explores the effects of ethanolic extracts from (CM), (CMC), and (ORD) on buccal epithelium permeability in vitro using a TR146 cell-based model.

View Article and Find Full Text PDF

Oral squamous cell carcinomas drive monocytes into immunosuppressive CD25CD163CD206 macrophages.

Oral Oncol

December 2024

Department of Immunology, Ophthalmology and ORL, School of Medicine, Complutense University of Madrid, Pza Ramon y Cajal, s/n, 28040 Madrid, Spain. Electronic address:

Article Synopsis
  • Tumor-associated macrophages (TAMs) play a significant role in the tumor microenvironment of oral squamous cell carcinomas (OSCCs) and primarily originate from circulating monocytes that differentiate locally.
  • Research showed that cell culture media from OSCC cell lines, H413 and TR146, encourages monocytes to become M2 macrophages, which are characterized by high CD163 and CD206 expression and low levels of activation markers.
  • Additionally, the study identified specific soluble proteins in the media that promote this differentiation and linked it to an immunosuppressive profile that hinders T cell activation, shedding light on how OSCCs support tumor growth by altering immune cell behavior.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!