The metabolism of the local anesthetics lidocaine and ropivacaine (ropi) involves several steps in humans. Lidocaine is mainly hydrolyzed and hydroxylated to 4-OH-2,6-xylidine (4-OH-xyl). The metabolism of ropi, involving dealkylation and hydroxylation, gives rise to 3-OH-ropi, 4-OH-ropi, 3-OH-2'6'-pipecoloxylidide (3-OH-PPX), and 2-OH-methyl-ropi. Because the metabolites are hydroxylated, they are particularly prone to subsequent Phase II conjugation reactions such as sulfation and glucuronidation. This study focused on the in vitro sulfation of these metabolites as well as another suspected metabolite of ropi, 2-carboxyl-ropi. All the metabolites were synthesized for the subsequent enzymatic studies. Five cloned human sulfotransferases (STs) were used in this study, namely, the phenol-sulfating form of ST (P-PST-1), the monoamine-sulfating form of ST (M-PST), estrogen-ST (EST), ST1B2, and dehydroepiandrosterone-ST (DHEA-ST), all of which are expressed in human liver. The results demonstrate that all of the metabolites except 2-OH-methyl-ropi and 2-carboxyl-ropi can be sulfated. It was also found that all of the STs can conjugate the remaining hydroxylated metabolites except DHEA-ST. However, there are large differences in the capacity of the individual human ST isoforms to conjugate the different metabolites. P-PST-1 sulfates 3-OH-PPX, 3-OH-ropi, and 4-OH-xyl; M-PST and EST conjugate 3-OH-PPX, 3-OH-ropi, and 4-OH-ropi whereas ST1B2 sulfates only 4-OH-xyl. The most extensively sulfated ropi metabolite is 3-OH-PPX. In conclusion, all of the hydroxylated metabolites of lidocaine and ropi can be sulfated if the hydroxyl group is attached to the aromatic ring in the metabolites. The human ST enzymes that are considered to be responsible for the sulfation of these metabolites in vivo are P-PST-1, M-PST, EST, and ST1B2. These enzymes are also found in the liver; this is the most important tissue for the metabolism of ropi in humans, demonstrated by.
Download full-text PDF |
Source |
---|
Adv Biotechnol (Singap)
February 2024
State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
Mass spectrometry imaging (MSI) serves as a valuable tool enabling researchers to scrutinize various compounds, peptides, and proteins within a sample, providing detailed insights at both elemental and molecular levels. This innovative technology transforms information obtained from a mass spectrometer- encompassing ionic strength, mass-to-charge ratio, and ionized molecule coordinates-within a defined region into a pixel-based model. Consequently, it reconstructs the spatial distribution of ions, allowing for a comprehensive understanding of molecular landscapes.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
July 2024
Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, 563099, Guizhou, China.
Militarine is a monomer molecule with abundant and distinctive biological properties, also the lead member of secondary metabolites in Bletilla striata, while its biosynthesis mechanism is still unknown. To improve the production efficiency of militarine, sodium acetate and salicylic acid (SA) were introduced as elicitors into the suspension-cultured callus of B. striata.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
Turmeric is affected by various phytopathogens, which cause huge economic losses to farmers. In the present study, ten isolates of Pythium spp. were isolated from infected turmeric rhizomes and characterized.
View Article and Find Full Text PDFPlanta
January 2025
Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
Optimizing environmental factors can significantly increase the growth and secondary metabolite synthesis of hydroponically grown medicinal plants. This approach can help increase the quality and quantity of pharmacologically important metabolites to enhance therapeutic needs. Medicinal plants are key therapeutic sources for treating various ailments.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
October 2024
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
The principle of the "growth-defense trade-off" governs how plants adjust their growth and defensive strategies in response to external factors, impacting interactions among plants, herbivorous insects, and their natural enemies. Mineral nutrients are crucial in modulating plant growth and development through their bottom-up effects. Emerging evidence has revealed complex regulatory networks that link mineral nutrients to plant defense responses, influencing the delicate balance between growth and defense against herbivores.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!