The mechanism of sulfonamide cleavage of PNU-109112, a potent HIV-1 protease inhibitor, by glutathione-S-transferase (GST) was investigated in the presence of reduced GSH. GST-catalyzed sulfonamide cleavage takes place via the nucleophilic attack of GSH on the pyridine moiety of the substrate with formation of the GS-para-CN-pyridinyl conjugate, the corresponding amine, and sulfur dioxide. Structure activity studies with a variety of sulfonamides indicate that an electrophilic center alpha to the sulfonyl group is required for cleavage. Substituents that withdraw electron density from the carbon atom alpha- to the sulfonyl group facilitate nucleophilic attack by the GS(-) thiolate bound to GST. The rate of sulfonamide cleavage is markedly affected by the nature of the electrophilic group; replacement of para-CN by para-CF(3) on the pyridine ring of PNU-109112 confers stability against sulfonamide cleavage. On the other hand, stability of sulfonamides is less dependent on the nature of the amine moiety. These principles can be applied to the synthesis of sulfonamides, labile toward cellular GST, that may serve as prodrugs for release of bioactive amines. Tumors are particularly attractive targets for these sulfonamide prodrugs as GST expression is significantly up-regulated in many cancer cells. Another potential application could be in organic synthesis, where protection of amines as the corresponding activated sulfonamides can be reversed by GST/GSH under mild conditions.
Download full-text PDF |
Source |
---|
Sci Total Environ
January 2025
Institute of Microbiology of the National Academy of Sciences of Belarus, Acad. Kuprevich str., 2, 220084 Minsk, Belarus.
There is an urgent need to develop effective and sustainable methods to decrease sulfonamide (SA) contamination of soil. Herein, a non-homogeneous system of zero-valent metal-biochar-based composites was proposed and tested for persulfate (PS) activation. This system employed zero-valent iron (Fe) as an electron donor to catalyze the cleavage of the OO bond in PS, thereby generating reactive oxygen species (ROS) that degrade SAs.
View Article and Find Full Text PDFWater Res
December 2024
Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China. Electronic address:
Elucidating biodegradation mechanisms and predicting pollutant reactivities are essential for advancing the application of biodegradation engineering to address the challenge of thousands of emerging contaminants. Molecular biology and computational chemistry are powerful tools for this purpose, enabling the investigation of biochemical reactions at both the gene and atomic levels. This study employs the biodegradation of ten sulfonamide antibiotics as a case study to demonstrate the integration of genomics and quantum chemistry approaches in exploring the biodegradation behavior of emerging contaminants.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Environment, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian District, Beijing 100875, China. Electronic address:
Sulfonamides (SAs) are one of the major emerging contaminants of concern, but comparative studies on the degradation of different types of SAs are still limited. This work comprehensively compared the degradation of sulfadiazine (SDZ), sulfamethoxazole (SMX) and sulfathiazole (STZ) under UV light in peracetic acid (PAA) from both experimental and theoretical aspects, as they represent two structural classes based on substituent differences. The two SAs with five-membered heterocyclic substituents (SMX, STZ) generally decomposed at faster rates, with SMX degrading up to 10 times faster than SDZ (pH = 3; PAA dosage = 80 mg/L).
View Article and Find Full Text PDFBioresour Technol
December 2024
Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan. Electronic address:
The ecological risks posed by incompletely degraded antibiotic intermediates in aquatic environments warrant significant attention. This study investigated the degradation mechanisms of sulfonamides (sulfadiazine, sulfamethoxazole) and quinolones (ciprofloxacin, norfloxacin) during thermally activated persulfate (TAP) treatment. The main degradation mechanisms for sulfonamides involved S-N bond cleavage and -NH oxidation mediated by sulfate and hydroxyl radicals, whereas quinolone degradation occurred primarily through piperazine ring cleavage facilitated by a single linear oxygen.
View Article and Find Full Text PDFNat Commun
November 2024
State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), Shanghai, PR China.
The transition metal-catalysed dicarbofunctionalisation of unactivated alkenes normally requires exogenous strong coordinated directing groups, thus reducing the overall reaction efficiency. Here, we report a ligand-enabled Ni(II)-catalysed dicarbofunctionalisation of unactivated alkenes with aryl/alkenyl boronic acids and alkyl halides as the coupling partners with a diverse range of native functional groups as the directing group. This dicarbofunctionalisation protocol provides an efficient and direct route towards vicinal 1,2-disubstituted alkanes using primary, secondary, tertiary amides, sulfonamides, as well as secondary and tertiary amines under redox-neutral conditions that are challenging to access through conventional methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!