We have previously described a family of cationic amphipathic peptides derived from lentivirus envelope proteins that have properties similar to those of naturally occurring antimicrobial peptides. Here, we explored the effects of amino acid truncations and substitutions on the antimicrobial potency and selectivity of the prototype peptide, LLP1. Removal of seven residues from the C-terminus of LLP1 had little effect on potency, but abrogated haemolytic activity. Replacement of the two glutamic acid residues of LLP1 with arginine resulted in a peptide with greater bactericidal activity. We discovered that the cysteine-containing peptides spontaneously formed disulphide-linked dimers, which were 16-fold more bactericidal to Staphylococcus aureus. Monomeric and dimeric LLP1 possessed similar alpha helical contents, indicating that disulphide formation did not alter the peptide's secondary structure. The dimerization strategy was applied to magainin 2, enhancing its bactericidal activity eight-fold. By optimizing all three properties of LLP1, a highly potent and selective peptide, named TL-1, was produced. This peptide is significantly more potent than LLP1 against gram-positive bacteria while maintaining high activity against gram-negative organisms and low activity against eukaryotic cells. In addition to new antimicrobial peptides, these studies contribute useful information on which further peptide engineering efforts can be based.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jac/44.1.33DOI Listing

Publication Analysis

Top Keywords

antimicrobial peptides
12
bactericidal activity
8
llp1
6
peptides
5
peptide
5
activity
5
lentivirus-derived antimicrobial
4
peptides increased
4
increased potency
4
potency sequence
4

Similar Publications

Purpose: To review the current evidence on the association between salivary protein profile and dental caries in children during mixed dentition stage.

Methods: This systematic review followed the PRISMA 2020 guidelines. Searches were run in PubMed, Scopus and Embase along with gray literature.

View Article and Find Full Text PDF

The widespread use of antibiotics has led to the emergence of multidrug-resistant bacteria, which pose significant threats to animal health and food safety. Host defense peptides (HDPs) have emerged as promising alternatives because of their unique antimicrobial properties and minimal resistance induction. However, the high costs associated with HDP production and incorporation into animal management practices hinder their widespread application.

View Article and Find Full Text PDF

Artificial intelligence (AI) is a promising approach to identify new antimicrobial compounds in diverse microbial species. Here we developed an AI-based, explainable deep learning model, EvoGradient, that predicts the potency of antimicrobial peptides (AMPs) and virtually modifies peptide sequences to produce more potent AMPs, akin to in silico directed evolution. We applied this model to peptides encoded in low-abundance human oral bacteria, resulting in the virtual evolution of 32 peptides into potent AMPs.

View Article and Find Full Text PDF

Research Progress on Extracellular Matrix-Based Composite Materials in Antibacterial Field.

Biomater Res

January 2025

Department of Orthopedics, The First People's Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Zhejiang 313000, China.

Due to their exceptional cell compatibility, biodegradability, and capacity to trigger tissue regeneration, extracellular matrix (ECM) materials have drawn considerable attention in tissue healing and regenerative medicine. Interestingly, these materials undergo continuous degradation and release antimicrobial peptides (AMPs) while simultaneously promoting tissue regeneration, thereby exerting a potent antibacterial effect. On this basis, a variety of basic properties of ECM materials, such as porous adsorption, hydrophilic adsorption, group crosslinking, and electrostatic crosslinking, can be used to facilitate the integration of ECM materials and antibacterial agents through physical and chemical approaches in order to enhance the antibacterial efficacy.

View Article and Find Full Text PDF

Background: Cancer immune responses are generated in secondary lymphoid organs, such as the lymph nodes and tonsils. In the current study, transcriptional profiles of peritumoral tonsillar tissues (PTTs) from oropharyngeal cancers (OPCs) were assessed and compared with those of inflammatory tonsils and regional lymph nodes (rLNs).

Methods: RNA samples of PTTs and rLNs from 13 OPCs, and 4 inflammatory tonsils were subjected to microarray analysis, and differentially expressed genes (DEGs) identified from 730 nCounter Panel immune-related genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!