This study evaluated the influence of low contraction forces on intramuscular haemodynamics in human masseter and temporalis using near-infrared tissue spectroscopy. This method allowed the intramuscular haemoglobin (Hb) to be assessed dynamically before, during and after a 5, 15, 25 and 100% maximum voluntary contraction (MVC). Twenty volunteers, 10 males and 10 females, without pain or dysfunction in the masticatory system were included in this study. Data were recorded for 30 s before, 30 s during and 5 min after the four sustained contraction tasks. The results showed that all four levels of voluntary contraction produced a clear haemodynamic response (during and after contraction) in both muscles. For analytical purposes, the maximum Hb achieved after 100% MVC was set equal to 1.00. In the masseter the mean peak Hb during the 5, 15, 25 and 100% MVC was 0.49, 0.92, 1.30 and 1.73 while after the contractions it was 0.50, 0.65, 0.78 and 1.00, respectively. In the temporalis the peak Hb during the contractions was 0.23, 0.36, 0.48 and 0.66 and after the contractions 0.32, 0.45, 0.56 and 1.00, respectively. Repeated-measures analysis of variance revealed a significant main effect for the different contraction levels both in the masseter (during contraction, p = 0.001; after contraction, p<0.001) and the temporalis (during contraction, p = 0.002; after contraction, p<0.001). These data suggest that low levels of contraction induce a clear haemodynamic response, even at 5% effort. When compared, the masseter and anterior temporalis showed clearly different patterns for the Hb signal during the contraction (p<0.001) as well as after it (p = 0.007). Specifically, the Hb during the contractions in the masseter appeared more stable than in the temporalis, which showed a strong return to baseline. Obviously the contracting masseter had a stronger and more sustained venous occlusion than the contracting temporalis. It is speculated that variation in architecture between the two muscles contributes to these differences in blood flow.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0003-9969(99)00059-x | DOI Listing |
PLoS One
January 2025
Department of Computer Science, Virginia Tech, Arlington, VA, United States of America.
Trade in wood and forest products spans the global supply chain. Illegal logging and associated trade in forest products present a persistent threat to vulnerable ecosystems and communities. Illegal timber trade has been linked to violations of tax and conservation laws, as well as broader transnational crimes.
View Article and Find Full Text PDFPLoS One
January 2025
School of Economics & Management, Shanghai Maritime University, Shanghai, China.
Analyzing the interactions between spot and time charter freight is crucial for the maritime industry. While numerous studies have explored the relationship between average freight indices and spillover effects, a gap remains in understanding the deeper connections between inter-regional shipping routes and chartering contracts. This research investigates the role of Capesize freight dynamics in shaping the regional dry bulk freight market, with a focus on the influence of energy and commodity price fluctuations.
View Article and Find Full Text PDFChron Respir Dis
January 2025
South Texas Veterans Health Care System, University of Texas Health, San Antonio, TX, USA.
Background: The efficacy and safety of ensifentrine, a novel PDE3/PDE4 inhibitor, were previously evaluated in the ENHANCE-1 (NCT04535986) and ENHANCE-2 (NCT04542057) trials. Here, we present a pooled post-hoc subgroup analysis of patients according to background chronic obstructive pulmonary disease (COPD) maintenance medication regimens.
Objective: This analysis aimed to explore the efficacy and safety of ensifentrine in patients receiving long-acting muscarinic antagonists (LAMA) or long-acting beta-agonists with inhaled corticosteroids (LABA + ICS).
FASEB J
January 2025
Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada.
This study, in vivo and in vitro, investigated the role of brain-derived neurotrophic factor (BDNF) in skeletal muscle adaptations to aerobic exercise. BDNF is a contraction-induced protein that may play a role in muscle adaptations to aerobic exercise. BDNF is involved in muscle repair, increased fat oxidation, and mitochondrial biogenesis, all of which are adaptations observed with aerobic training.
View Article and Find Full Text PDFSports Med
January 2025
School of Athletic Performance, Shanghai University of Sport, No. 200, Henren Road, Shanghai, 200438, China.
Background: Post-activation performance enhancement (PAPE) has demonstrated efficacy in acutely improving athletic performance. However, its distinction from general warm-up (GW) effects remains ambiguous, and experimental designs adopted in most PAPE studies exhibit important limitations.
Objectives: The aims of this work are to (i) examine the effects of research methodology on PAPE outcomes, (ii) explore PAPE outcomes in relation to comparison methods, performance measures, GW comprehensiveness, recovery duration, participants' characteristics, conditioning activity (CA) parameters, and (iii) make recommendations for future PAPE experimental designs on the basis of the results of the meta-analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!