Active intestinal elimination of ciprofloxacin in rats: modulation by different substrates.

Br J Pharmacol

Service de Pharmacie Clinique et des Biomatériaux, G.H. Bichat-C. Bernard, 75018 Paris, France.

Published: August 1999

1. Two in vivo models, in the rat, were used to investigate, in the presence of different substrates, the overall and net intestinal elimination of ciprofloxacin: an open-intestinal perfusion model and an intestinal loop model respectively. 2. In the presence of quinidine, verapamil and cyclosporin (substrates of the P-glycoprotein (P-gp)), plasma AUCs of ciprofloxacin were 1.5 - 2 fold increased, while biliary clearance (1.5 - 2 fold), intestinal overall and net clearances (2 - 4 fold and 1.5 - 8 fold respectively) decreased. The weak effect obtained with cyclosporin as compared to verapamil and especially quinidine, suggests, for ciprofloxacin, the existence of transport systems distinct from the P-gp, as the OCT1 transporter which could be inhibited by quinidine. 3. With cephalexin and azlocillin, two beta-lactam antibiotics, plasma AUCs of ciprofloxacin increased and biliary and intestinal overall clearances decreased in a similar fashion (1.3 - 2 fold), suggesting the involvement of organic anion and/or cation transporters. 4. In the presence of structural analogues, the effect was dependent on the compound administered: Sparfloxacin had no effect on intestinal clearance of ciprofloxacin. In contrast, with pefloxacin, overall intestinal clearance of ciprofloxacin was decreased and net intestinal clearance increased. 5. The specificity of ciprofloxacin intestinal transport appears to be different from P-gp as outlined by the lack of competition with sparfloxacin, a P-gp substrate. Ciprofloxacin intestinal elimination seems to be mediated by organic anion and/or cation transporters and a mechanism sensitive to quinidine and verapamil.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1566149PMC
http://dx.doi.org/10.1038/sj.bjp.0702703DOI Listing

Publication Analysis

Top Keywords

intestinal elimination
12
intestinal clearance
12
ciprofloxacin
9
intestinal
9
elimination ciprofloxacin
8
net intestinal
8
quinidine verapamil
8
plasma aucs
8
aucs ciprofloxacin
8
increased biliary
8

Similar Publications

Protocol for generating liver metastasis microtissues to decipher cellular interactions between metastatic intestinal cancer and liver tissue.

STAR Protoc

January 2025

Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands. Electronic address:

Cell competition is a quality control mechanism that promotes elimination of suboptimal cells relative to fitter neighbors. Cancer cells exploit these mechanisms for expansion, but the underlying molecular pathways remain elusive. Here, we present a protocol for generating matrix-free microtissues recapitulating cellular interactions between intestinal cancer and hepatocyte-like cells using microscopy or transcriptomics/proteomics.

View Article and Find Full Text PDF

Objective: To investigate the efficacy of laparoscopic sigmoid extraperitoneal colostomy combined with pelvic peritoneal closure in abdominoperineal resection for low rectal cancer.

Methods: We retrospectively analyzed the clinical data of 162 patients with low rectal cancer, who underwent laparoscopic abdominoperineal resection from January 2015 to January 2019 at the Affiliated Peace Hospital of Changzhi Medical College. Extraperitoneal stoma construction was performed in 98 patients (study group), while 64 patients (control group) underwent the procedure without suturing the pelvic peritoneum.

View Article and Find Full Text PDF

The Gut Microbiome in Hyperuricemia and Gout.

Arthritis Rheumatol

January 2025

Assistant Professor of Pathology and of Microbiology and Microbiology and Immunology, Stanford University, Stanford, CA, 94305.

Humans develop hyperuricemia via decreased urate elimination and excess urate production, consequently promoting monosodium urate crystal deposition and incident gout. Normally, approximately two thirds of urate elimination is renal. However, chronic kidney disease (CKD) and other causes of decreased renal urate elimination drive hyperuricemia in most with gout.

View Article and Find Full Text PDF

Secondary hyperoxaluria is a metabolic disorder characterized by an increase in urinary oxalate excretion. The etiology may arise from an increase in the intake of oxalate or its precursors, decreased elimination at the digestive level, or heightened renal excretion. Recently, the role of the SLC26A6 transporter in the etiopathogenesis of this disease has been identified.

View Article and Find Full Text PDF

Background: Celiac disease (CD) is an autoimmune disease that results from the interaction of genetic, immune, and environmental factors. According to the 2020 European Society for Pediatric Gastroenterology Hepatology and Nutrition (ESPGHAN) guidelines, an elimination diet (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!