Pyrophosphorolytic dismutation of oligodeoxy-nucleotides by terminal deoxynucleotidyltransferase.

Nucleic Acids Res

Baylor College of Medicine, Department of Biochemistry, One Baylor Plaza, Houston TX 77030, USA.

Published: August 1999

AI Article Synopsis

Article Abstract

Terminal transferase (TdT), when incubated with a purified(32)P-5"-end-labeled oligonucleotide of defined length in the presence of Co(2+), Mn(2+)or Mg(2+)and 2-mercaptoethanol in cacodylate or HEPES buffer, pH 7.2, exhibits the ability to remove a 3"-nucleotide from one oligonucleotide and add it to the 3"-end of another. When analyzed by urea-PAGE, this activity is observed as a disproportionation of the starting oligonucleotide into a ladder of shorter and longer oligonucleotides distributed around the starting material. Optimal metal ion concentration is 1-2 mM. All three metal ions support this activity with Co(2+)> Mn(2+) congruent with Mg(2+). Oligonucleotides p(dT) and p(dA) are more efficient substrates than p(dG) and p(dC) because the latter may form secondary structures. The dismutase activity is significant even in the presence of dNTP concentrations comparable to those that exist in the nucleus during the G(1)phase of the cell cycle. Using BetaScope image analysis the rate of pyrophosphorolytic dismutase activity was found to be only moderately slower than the poly-merization activity. These results may help explain the GC-richness of immunoglobulin gene segment joins (N regions) and the loss of bases that occur during gene rearrangements in pre-B and pre-T cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC148547PMC
http://dx.doi.org/10.1093/nar/27.15.3190DOI Listing

Publication Analysis

Top Keywords

dismutase activity
8
activity
5
pyrophosphorolytic dismutation
4
dismutation oligodeoxy-nucleotides
4
oligodeoxy-nucleotides terminal
4
terminal deoxynucleotidyltransferase
4
deoxynucleotidyltransferase terminal
4
terminal transferase
4
transferase tdt
4
tdt incubated
4

Similar Publications

Background: Morphine, a mu-opioid receptor (MOR) agonist commonly utilized in clinical settings alongside chemotherapy to manage chronic pain in cancer patients, has exhibited contradictory effects on cancer, displaying specificity toward certain cancer types and doses.

Objective: The aim of this study was to conduct a systematic assessment and comparison of the impacts of morphine on three distinct cancer models in a preclinical setting.

Methods: Viability and apoptosis assays were conducted on a panel of cancer cell lines following treatment with morphine, chemotherapy drugs alone, or their combination.

View Article and Find Full Text PDF

The chemotherapeutic drug doxorubicin (DOX) has been widely used for treating solid tumors attributed to its antiproliferative effectiveness; however, its clinical use is limited due to side effects, including cardiotoxicity, myelosuppression, and drug resistance. Combining DOX with buthionine sulfoximine (BSO), a glutathione (GSH) synthesis inhibitor, showed promising results in overcoming these adverse effects, potentially reducing the required DOX dose while maintaining efficacy. The aim of the present study was to examine the effects of different concentrations of BSO and DOX, both individually and in combination, utilizing B16/F10 (murine melanoma), SNB-19 (human glioblastoma), S180 (murine sarcoma), and SVEC4-10 (murine endothelial) cell lines.

View Article and Find Full Text PDF

Aquaporins are widely present in the plant kingdom and play important roles in plant response to abiotic adversity stresses such as water and temperature extremes. In this study, we investigated the regulatory role of NTPIP2;4 on drought tolerance in tobacco at physiological and transcriptional levels. In this experiment, we constructed an NtPIP2;4 overexpression vector and genetically transformed tobacco variety 'K326' to investigate the mechanism of NtPIP2;4 gene in regulating drought tolerance in tobacco at physiological and transcriptomic levels.

View Article and Find Full Text PDF

(-)-Epigallocatechin-3-gallate promotes the dermal papilla cell proliferation and migration through the induction of VEGFA.

Biochim Biophys Acta Mol Cell Res

January 2025

College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China. Electronic address:

Dermal papilla cells (DPCs) are crucial for the growth and development of hair follicles (HF). (-)-Epigallocatechin-3-gallate (EGCG) is the primary catechin identified in green tea, which has antioxidant effects and regulates cell activity. This study demonstrates that EGCG could promote the proliferation of DPCs.

View Article and Find Full Text PDF

Metabolomics approach to evaluate diclazuril-induced developmental toxicity in zebrafish embryo.

Aquat Toxicol

January 2025

Analytical Chemistry Laboratory, ASSIST Group, Main campus, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow India. Electronic address:

Anticoccidials, commonly used in veterinary medicine to treat coccidiosis in food-producing animals, particularly in poultry farming, are associated with potential environmental risks due to their excretion in manure and subsequent land-spreading. Diclazuril, a widely used anticoccidial, has been detected in groundwater, raising concerns about its impact on non-target species. This study investigates the developmental toxicity of diclazuril in zebrafish embryos over a 96-hour exposure period, utilizing biomarkers such as oxidative stress indicators and metabolomic profiles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!