The question was addressed whether short-term (4 hour) NO deficiency, inducing an increase in blood pressure in anaesthetized dogs, does influence proteosynthesis in the myocardium and coronary arteries. A potentially positive answer was to be followed by the study of the supporting role of ornithine decarboxylase for the polyamines pathway. N(G)-nitro-L-arginine-methyl ester (L-NAME) (50 mg/kg per hour) was administered i.v. to inhibit NO synthase. After the first L-NAME dose diastolic blood pressure increased from 131.8+/-2.0 to 149.4+/-3.9 mm Hg (p<0.001) and was maintained at about this level till the end of the experiment. Systolic blood pressure only increased after the first dose (from 150.8+/-1.1 to 175.0+/-5.8 mm Hg, p<0.01), returning thereafter to the control level. Similarly, the heart rate declined only after the first dose (from 190.4+/-5.3 to 147.6+/-4.5 beats/min, p<0.01). Total RNA concentrations increased in the left cardiac ventricle (LV), the left anterior descending coronary artery (LADCA) and left circumflex coronary artery (LCCA) by 15.9+/-0.7, 29.7+/-1.3 and 17.6+/-1.0%, p<0.05, respectively. The same applied to [14C]leucine incorporation (by 86.5+/-5.0, 33.5+/-2.6, 29.3+/-4.1%, p<0.05, respectively). The above parameters indicated an increase of proteosynthesis in the LV myocardium and both coronary arteries LADCA and LCCA after short-term NO deficiency. Surprisingly, the ornithine decarboxylase activity in the LV myocardium decreased significantly by 40.2+/-1.6% (p<0.01) but the changes were not significant in the coronary arteries. This unexpected finding makes the role of polyamines in increasing proteosynthesis during a pressure overload due to NO deficiency questionable.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!