Transketolase (TK) reactions play a crucial role in tumor cell nucleic acid ribose synthesis utilizing glucose carbons, yet, current cancer treatments do not target this central pathway. Experimentally, a dramatic decrease in tumor cell proliferation after the administration of the TK inhibitor oxythiamine (OT) was observed in several in vitro and in vivo tumor models. Here, we demonstrate that pentose cycle (PC) inhibitors, OT and dehydroepiandrosterone (DHEA), efficiently regulate the cell cycle and tumor proliferation processes. Increasing doses of OT or DHEA were administered by daily intraperitoneal injections to Ehrlich's ascites tumor hosting mice for 4 days. The tumor cell number and their cycle phase distribution profile were determined by DNA flow histograms. Tumors showed a dose dependent increase in their G0-G1 cell populations after both OT and DHEA treatment and a simultaneous decrease in cells advancing to the S and G2-M cell cycle phases. This effect of PC inhibitors was significant, OT was more effective than DHEA, both drugs acted synergistically in combination and no signs of direct cell or host toxicity were observed. Direct inhibition of PC reactions causes a G1 cell cycle arrest similar to that of 2-deoxyglucose treatment. However, no interference with cell energy production and cell toxicity is observed. PC inhibitors, specifically ones targeting TK, introduce a new target site for the development of future cancer therapies to inhibit glucose utilizing pathways selectively for nucleic acid production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-5793(99)00924-2DOI Listing

Publication Analysis

Top Keywords

tumor cell
12
cell cycle
12
cell
10
cycle arrest
8
pentose cycle
8
nucleic acid
8
toxicity observed
8
cycle
7
tumor
7
oxythiamine dehydroepiandrosterone
4

Similar Publications

Inflammation and Immune Escape in Ovarian Cancer: Pathways and Therapeutic Opportunities.

J Inflamm Res

January 2025

Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China.

Ovarian cancer (OC) remains one of the most lethal gynecological malignancies, largely due to its late-stage diagnosis and high recurrence rates. Chronic inflammation is a critical driver of OC progression, contributing to immune evasion, tumor growth, and metastasis. Inflammatory cytokines, including IL-6, TNF-α, and IL-8, as well as key signaling pathways such as nuclear factor kappa B (NF-kB) and signal transducer and activator of transcription 3 (STAT3), are upregulated in OC, promoting a tumor-promoting environment.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer, characterized by frequent recurrence, metastasis, and poor survival outcomes despite chemotherapy-based treatments. This study aims to investigate the mechanisms by which Traditional Chinese Medicine (TCM) modulates the tumor immune microenvironment in TNBC, utilizing CiteSpace and bioinformatics analysis.

Methods: We employed CiteSpace to analyze treatment hotspots and key TCM formulations, followed by bioinformatics analysis to identify the main active components, targets, associated pathways, and their clinical implications in TNBC treatment.

View Article and Find Full Text PDF

Introduction: Glioma is the most common primary malignant brain tumor. Despite advances in surgical techniques and treatment regimens, the therapeutic effects of glioma remain unsatisfactory. Immunotherapy has brought new hope to glioma patients, but its therapeutic outcomes are limited by the immunosuppressive nature of the tumor microenvironment (TME).

View Article and Find Full Text PDF

Generation and characterization of OX40-ligand fusion protein that agonizes OX40 on T-Lymphocytes.

Front Immunol

January 2025

Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.

OX40, a member of the tumor necrosis factor (TNF) receptor superfamily, is expressed on the surface of activated T cells. Upon interaction with its cognate ligand, OX40L, OX40 transmits costimulatory signals to antigen-primed T cells, promoting their activation, differentiation, and survivalprocesses essential for the establishment of adaptive immunity. Although the OX40-OX40L interaction has been extensively studied in the context of disease treatment, developing a substitute for the naturally expressed membrane-bound OX40L, particularly a multimerized OX40L trimers, that effectively regulates OX40-driven T cell responses remains a significant challenge.

View Article and Find Full Text PDF

Background: The Arp2/3 complex is a key regulator of tumor metastasis, and targeting its subunits offers potential for anti-metastatic therapy. However, the expression profiles, prognostic relevance, and diagnostic value of its subunits across cancers remain poorly understood. This study aims to investigate the clinical relevance of Arp2/3 complex subunits, particularly ARPC1A, in pan-cancer, and to further analyze the potential biological mechanisms of ARPC1A, as well as its association with immune infiltration and chemotherapy drug sensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!