AI Article Synopsis

Article Abstract

A model has previously been proposed for the genetic relatedness of the structural proteins of polyoma virus, based upon similarities in the peptide maps of the major capsid protein VP1 with the virion proteins VP2 and VP3. Newer evidence suggests that this model is incorrect, and that protein VP1 is a product of one viral gene and that the multiple components of VP2 and VP3 are products of a second viral gene. Two-dimensional peptide maps of several preparations of polyoma purified separately from four separate infected-cell lysates has shown a variable content of VP1 peptides in proteins VP2 and VP3, with some preparations being free of detectable VP1 material in VP2 and VP3. An alternative explanation for the presence of VP1 peptides in the regions of VP2 and VP3 of some polyoma preparations involves the cleavage of proteins of polyoma virions during exposure to proteolytic enzymes in lysates of infected cells or to endogenous proteolytic activity of virions. Prolonged incubation of infected-cell lysates at 37 degrees C leads to an increase in the amount of 86,000-dalton dimer of VP1, a decrease in the relative amount of VP1, a decrease in or a loss of the lower band of VP2, and the appearance of a new major protein band of approximately 29,000 daltons. Two-dimensional peptide maps of the new 29,000-dalton protein show that it contains some VP1 peptides, indicating that this protein is derived from proteolytic cleavage of VP1. In addition, extensively purified polyoma virus contains a proteolytic activity that can be activated during disruption of the virus with 0.2 M Na2CO3-NaHCO3 (pH 10.6) in the presence of 5 X 10(-3) M dithiothreitol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC355019PMC
http://dx.doi.org/10.1128/JVI.20.2.520-526.1976DOI Listing

Publication Analysis

Top Keywords

vp2 vp3
20
proteins polyoma
12
polyoma virus
12
peptide maps
12
protein vp1
12
vp1 peptides
12
vp1
9
structural proteins
8
virus proteolytic
8
virion proteins
8

Similar Publications

Construction and efficacy of recombinant Newcastle disease virus co-expressing VP2 and VP3 proteins of very virulent infectious bursal disease virus.

Poult Sci

October 2024

State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China. Electronic address:

Article Synopsis
  • Infectious bursal disease (IBD), caused by IBDV, significantly threatens the poultry industry due to its ability to weaken the immune system and the rise of severe virus strains.
  • Traditional vaccines have shortcomings, prompting research into a new vaccine that uses a recombinant Newcastle disease virus (NDV) to express important IBDV proteins (VP2 and VP3) for better immune response.
  • The study found that the new rNDV-VP2-VP3 vaccine generated stronger antibody responses and offered better protection against IBDV compared to previous vaccine methods, suggesting it could effectively control IBD in poultry.
View Article and Find Full Text PDF

Physicochemical and biological impacts of light stress on adeno-associated virus serotype 6.

Mol Ther Methods Clin Dev

December 2024

Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

Article Synopsis
  • Recombinant adeno-associated virus (rAAV) is being studied as a gene therapy vector, but its response to light exposure has not been fully understood.
  • Research on rAAV6 with EGFP showed that light stress resulted in a 20% loss of virus particles and a 90% reduction in biological activity, primarily due to DNA degradation.
  • Analysis revealed that light exposure causes specific types of protein and DNA damage, indicating the importance of careful handling and storage of rAAV to preserve its therapeutic effectiveness.
View Article and Find Full Text PDF

Novel polyomavirus in the endangered garden dormouse Eliomys quercinus.

Virol J

November 2024

Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, Vilnius, LT-10257, Lithuania.

Article Synopsis
  • The garden dormouse's population in Europe has declined significantly due to factors like habitat loss, climate change, and potentially pathogen exposure.
  • In a study involving 89 garden dormice from Germany, researchers tested kidney samples for polyomavirus DNA and checked for antibodies in their body fluids.
  • A new polyomavirus related to other known polyomaviruses was identified, with a small percentage of dormice testing positive for the virus, suggesting that further research is needed to determine its significance and specificity to the garden dormouse.
View Article and Find Full Text PDF

Antisera-Neutralizing Capacity of a Highly Evolved Type 2 Vaccine-Derived Poliovirus from an Immunodeficient Patient.

Viruses

November 2024

Department of Industrial Transformation, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming 650000, China.

Article Synopsis
  • The serotype 2 oral poliovirus vaccine (OPV2) can revert and lead to vaccine-derived poliovirus, posing a threat to eradication efforts, especially in immunocompromised individuals.
  • A study analyzed changes in specific amino acids within the virus's structure that affect its ability to be neutralized by immune serum from vaccinated individuals.
  • The findings indicate that mutations in the virus significantly reduce the effectiveness of antibodies, highlighting the need for ongoing monitoring of immunocompromised populations and maintaining high vaccination rates in these communities.
View Article and Find Full Text PDF

Coxsackievirus B2 (CVB2) is a member of the enterovirus group known to induce a spectrum of illnesses, from mild to severe. In the summer of 2022, an unusual outbreak of enteroviral central nervous system (CNS) infections occurred that was attributed to CVB2. Cerebrospinal fluid (CSF) samples collected from patients in 2015-2022 were tested for enterovirus via RT-PCR, followed by Sanger sequencing for positive cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!