Resveratrol is a selective human cytochrome P450 1A1 inhibitor.

Biochem Biophys Res Commun

College of Pharmacy, Chungang University, Seoul, Korea, 156-756.

Published: August 1999

Resveratrol (trans-3,4',5-trihydroxystilbene) is a phytoalexin compound found in juice and wine produced from dark-skinned grape cultivars and reported to have anti-inflammatory and anticarcinogenic activities. To investigate the mechanism of anticarcinogenic activities of resveratrol, the effects on cytochrome P450 (P450) were determined in human liver microsomes and Escherichia coli membranes coexpressing human P450 1A1 or P450 1A2 with human NADPH-P450 reductase (bicistronic expression system). Resveratrol slightly inhibited ethoxyresorufin O-deethylation (EROD) activity in human liver microsomes with an IC(50) of 1.1 mM. Interestingly, resveratrol exhibited potent inhibition of human P450 1A1 in a dose-dependent manner with IC(50) of 23 microM for EROD and IC(50) of 11 microM for methoxyresorufin O-demethylation (MROD). However, the inhibition of human P450 1A2 by resveratrol was not so strong (IC(50) 1.2 mM for EROD and 580 microM for MROD). Resveratrol showed over 50-fold selectivity for P450 1A1 over P450 1A2. The activities of human NADPH-P450 reductase were not significantly changed by resveratrol. In a human P450 1A1/reductase bicistronic expression system, resveratrol inhibited human P450 1A1 activity in a mixed-type inhibition (competitive-noncompetitive) with a K(i) values of 9 and 89 microM. These results suggest that resveratrol is a selective human P450 1A1 inhibitor, and may be considered for use as a strong cancer chemopreventive agent in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1006/bbrc.1999.1152DOI Listing

Publication Analysis

Top Keywords

p450 1a1
24
human p450
24
p450
12
p450 1a2
12
human
11
resveratrol
10
resveratrol selective
8
selective human
8
cytochrome p450
8
1a1 inhibitor
8

Similar Publications

Methicillin-resistant Staphylococcus aureus (MRSA) is a common cause of severe pneumonia and acute respiratory distress syndrome (ARDS). To advance our mechanistic understanding of this important pathogen, we characterized the effects of MRSA-induced epigenetic modification of histone 3 lysine 9 acetylation (H3K9ac), an activator of gene transcription, on lung endothelial cells (EC), a critical site of ARDS pathophysiology. Chromatin immunoprecipitation and sequencing (ChIP-seq) analysis revealed that MRSA induces H3K9ac in the promoter regions of multiple genes, with the highest ranked peak annotated to the CYP1A1 gene.

View Article and Find Full Text PDF

Therapeutic effects of melatonin on the lungs of rats exposed to passive smoking.

Respir Res

November 2024

College of Animal Science and Food Engineering, Jinling Institute of Technology, Qixia, Nanjing, 210046, China.

Background: Passive smoke has a significant impact on lung function and constitutes a critical public health issue, as smoking generates free radicals that damage the lungs and other tissues. Currently, limited research exists on whether the antioxidant melatonin can mitigate lung damage caused by smoking. This study aims to investigate the mechanisms through which melatonin alleviates acute lung disease induced by passive smoking.

View Article and Find Full Text PDF

Telmisartan potentiates the ITE-induced aryl hydrocarbon receptor activity in human liver cell line.

Arch Toxicol

October 2024

Department of Biochemical Science and Technology, National Chiayi University, Chiayi, 60004, Taiwan, ROC.

Telmisartan is an angiotensin receptor blocker (ARB) approved by the Food and Drug Administration of the US for the treatment of hypertension. It possesses unique pharmacologic properties, including the longest half-life among all ARBs; this leads to a 24-h sustained reduction of blood pressure. Besides well-known antihypertensive and cardioprotective effects, there is also strong clinical evidence that telmisartan confers renoprotection.

View Article and Find Full Text PDF

Generation and application of CES1-knockout Tet-Off-regulated CYP3A4 and UGT1A1-expressing Caco-2 cells.

Toxicol Lett

November 2024

Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka 565-0871, Japan. Electronic address:

Caco-2 cells, a human colorectal adenocarcinoma cell line, are widely used to model small intestinal epithelial cells in the drug development process because they can predict drug absorption with high accuracy. However, Caco-2 cells have several issues. First, Caco-2 cells have little expression of cytochrome P450 3A4 (CYP3A4), which is a major drug-metabolizing enzyme in the human intestine.

View Article and Find Full Text PDF

Induction of drug metabolizing enzyme and drug transporter expression by antifungal triazole pesticides in human HepaSH hepatocytes.

Chemosphere

October 2024

Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France. Electronic address:

Triazole pesticides are widely used fungicides, to which humans are rather highly exposed. They are known to activate drug-sensing receptors regulating expression of hepatic drug metabolizing enzymes and drug transporters, thus suggesting that the hepatic drug detoxification system is modified by these agrochemicals. To investigate this hypothesis, the effects of 9 triazole fungicides towards expression of drug metabolizing enzymes and transporters were characterized in cultured human HepaSH cells, that are human hepatocytes deriving from chimeric humanized liver TK-NOG mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!