Doubly transgenic mice (PSAPP) overexpressing mutant APP and PS1 transgenes were examined using antibodies to Abeta subtypes and glial fibrillary acidic protein (GFAP). Visible Abeta deposition began primarily in the cingulate cortex of PSAPP mice at approximately 10 weeks of age. By 6 months, the mice had extensive amyloid deposition throughout the hippocampus and cortex as well as other regions of the brain. Highly congophilic deposits consisting of N-terminal normal and modified forms of Abeta were identified, reminiscent of those found in human AD brain. Both immunohistochemistry and mass spectrometry showed that Abeta42 forms were underrepresented relative to Abeta40, and Abeta43 was undetectable. Deposits were associated with prominent gliosis which increased with age, but in 14-month-old PSAPP mice, GFAP immunoreactivity in the vicinity of amyloid deposits was substantially reduced compared to APP littermates. These mice have considerable utility in the study of the amyloid phenotype of AD.

Download full-text PDF

Source
http://dx.doi.org/10.1006/nbdi.1999.0243DOI Listing

Publication Analysis

Top Keywords

amyloid phenotype
8
transgenic mice
8
overexpressing mutant
8
psapp mice
8
mice
6
amyloid
5
phenotype characterization
4
characterization transgenic
4
mice overexpressing
4
mutant amyloid
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Institute of Neurosciences, University of Barcelona, Barcelona, Catalunya, Spain.

Background: Senescence is a cellular response to stress or damage leading to a state of irreversible growth arrest. As we age, the number of senescent cells increases and directly contributes to age-related conditions including cancer and neurodegenerative diseases. As a result, there is a growing interest to therapeutically target senescence either with drugs eliminating senescent cells (senolytics) or with strategies to modulate their secretory phenotype among others.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden.

Background: Alzheimer's disease (AD) is associated with synaptic and memory dysfunction. A pathological hallmark of the disease is reactive astrogliosis, with reactive astrocytes surrounding amyloid plaques in the brain. Astrocytes have also been shown to be actively involved in disease progression, nevertheless, mechanistic information about their role in synaptic transmission during AD pathology is lacking.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Pacific Brain Health Center, Pacific Neuroscience Institute Foundation, Santa Monica, CA, USA.

Background: Brain accumulation of amyloid-ß (Aß) in plaques and neurons is the cause of AD neuropathology that is opposed by autologous monocyte/macrophages (MMs) in health but this defense fails in AD.

Method: RNAseq, immunochemistry of the brain, immunofluorescence, and confocal microscopy of macrophages.

Result: In the AD brain, MMs shuttle Aß from parenchyma to vessels, which develop vasculitis, causing amyloid-related imaging abnormalities (ARIAs).

View Article and Find Full Text PDF

Background: Clinicopathological studies of Alzheimer's disease (AD) have demonstrated that synaptic or neuronal loss and clinical cognitive decline do not reliably correlate with fibrillar amyloid burden. We created a transgenic mouse model overexpressing Dutch (E693Q) mutant human amyloid precursor protein (APP) driven by the pan-neuronal Thy1 promoter. Accumulation of APP carboxyl-terminal fragments was observed in the brains of these mice, which develop an impaired learning phenotype directly proportional to brain oAβ levels.

View Article and Find Full Text PDF

Background: Host commensal gut microbes are shown to be crucial for microglial maturation, and functions that involve innate immune responses to maintain brain homeostasis. Sex has a crucial role in the incidence of neurological diseases with females showing higher progression of AD compared with males. Transcriptomics has been a powerful tool for the characterization of microglial phenotypes however, there is a large gap in relating to their functional protein abundances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!