The 5-methyl group of thymidine residues protrudes into the major groove of double helical DNA. The structural influence of this exocyclic substituent has been examined using a PCR-made 160 bp fragment in which thymidine residues were replaced with uridine residues. We show that the dT-->dU substitution and the consequent deletion of the methyl group affects the cleavage of DNA by deoxyribonuclease I and micrococcal nuclease. Analysis of the DNase I cleavage sites, in terms of di and trinucleotides, indicates that homopolymeric tracts of d(AT) become significantly more susceptible to DNase I cleavage when uridine is substituted for thymidine residues. The results indicate that removal of the thymidine methyl groups from the major groove at AT tracts induces structural perturbations that transmit into the opposite minor groove, where they can be detected by endonuclease probing. In contrast, DNase I footprinting experiments with different mono and bis-intercalating drugs reveal that dT-->dU substitution does not markedly affect sequence-specific drug-DNA recognition in the minor or major groove of the double helix. The consequences of demethylation of thymidine residues are discussed in terms of changes in the minor groove width connected to variations in the flexibility of DNA and the intrinsic curvature associated with AT tracts. The study identifies the methyl group of thymine as an important molecular determinant controlling the width of the minor groove and/or the flexibility of the DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmbi.1999.2979DOI Listing

Publication Analysis

Top Keywords

thymidine residues
16
major groove
12
minor groove
12
groove double
8
dt-->du substitution
8
methyl group
8
dnase cleavage
8
flexibility dna
8
residues
6
groove
6

Similar Publications

Wall teichoic acids (WTAs) from the major Gram-positive foodborne pathogen Listeria monocytogenes are peptidoglycan-associated glycopolymers decorated by monosaccharides that, while not essential for bacterial growth, are required for bacterial virulence and resistance to antimicrobials. Here we report the structure and function of a bacterial WTAs rhamnosyltransferase, RmlT, strictly required for L. monocytogenes WTAs rhamnosylation.

View Article and Find Full Text PDF

Discovery of pentacyclic triterpene conjugates as HBV polymerase/NTCP dual-targeting inhibitors with potent anti-HBV activities.

Bioorg Chem

January 2025

School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China. Electronic address:

The inhibition of HBV DNA and elimination of HBsAg has already been established as an indicator for HBV clinic cure, and a novel dual-targeting inhibitors of HBV polymerase/entry are designed and synthesized in this study. Pentacyclic triterpenes (PTs) scaffold of exhibiting a high affinity to NTCP, including glycyrrhitinic acid (GA), oleanolic acid (OA), ursolic acid (UA), and betulinic acid (BA) were linked neatly with the nucleoside drug zidovudine (AZT) through a molecular hybrid strategy to synthesize twenty of PTs-AZT conjugates for targeting HBV polymerase as well as sodium taurocholate cotransporting polypeptide (NTCP). The conjugates showed significant inhibitory effects on the secretion of HBsAg and HBeAg in HepG2.

View Article and Find Full Text PDF

Pronucleotides, after entering the cell, undergo chemical or enzymatic conversion into nucleotides with a free phosphate residue, and the released nucleoside 5'-monophosphate is then phosphorylated to the biologically active form, namely nucleoside 5'-triphosphate. The active form can inhibit HIV virus replication. For the most effective therapy, it is necessary to improve the transport of prodrugs into organelles.

View Article and Find Full Text PDF

DNA photo-crosslinking reactions occur widely in biological systems and are often used as valuable tools in molecular biology. In this article, we demonstrate the application of an oligonucleotide 5-fluoro-2'-O-methyl-4-thiouridine ()-containing probe for the fluorescent detection of specific DNA sequences. The design of the probe was predicated on studies of agents that could adversely affect its efficiency.

View Article and Find Full Text PDF

The article explores the polypharmacological profiling of 4-((5-(decylthio)-4-methyl-4H-1,2,4-triazole-3-yl)methyl)morpholine as a potential antimicrobial agent. The study utilized 15148 electronic pharmacophore models of organisms, ranked by the Tversky index. Detailed analysis revealed classical bonding patterns with selected enzymes, identifying key amino acid residues involved in complex formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!