In plants, multiple calmodulin (CaM) isoforms exist in an organism which vary in their primary structures in as much as 32 residues out of their 148 amino acids. These CaM isoforms show differences in their expression patterns and/or target enzyme activation ability. To further understand the biological significance of CaM isoforms, we examined whether CaM isoforms act on specific regulatory targets. In gel overlay assays on various soybean tissue extracts, surprisingly, two soybean CaM isoforms (SCaM-1 and SCaM-4) did not show significant differences in their target binding protein profiles, although they exhibited minor differences in their relative target binding affinities. In addition, both SCaM isoforms not only effectively bound five known plant CaMBPs, but also showed competitive binding to these proteins. Finally, immunolocalization experiments with the SCaM proteins in sections of various tissues using specific antibodies revealed similar distribution patterns for the SCaM isoforms except for root tissues, which indicates that the SCaM isoforms are concomitantly expressed in most plant tissues. These results suggest that CaM isoforms may compete for binding to CaMBPs in vivo. This competitive nature of CaM isoforms may allow modulation of Ca(2+)/CaM signaling pathways by virtue of relative abundance and differential target activation potency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0167-4838(99)00149-1 | DOI Listing |
Mol Divers
December 2024
Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
Triple-negative breast cancer (TNBC) lacks estrogen, progesterone, and HER2 expression, accounting for 15-20% of breast cancer cases. It is challenging due to low therapeutic response, heterogeneity, and aggressiveness. The PI3Ka isoform is a promising therapeutic target, often hyperactivated in TNBC, contributing to uncontrolled growth and cancer cell formation.
View Article and Find Full Text PDFCell Death Dis
November 2024
MRC Toxicology Unit, University of Cambridge, Cambridge, UK.
Dysregulated mitochondrial fusion and fission has been implicated in the pathogenesis of numerous diseases. We have identified a novel function of the p53 family protein TAp73 in regulating mitochondrial dynamics. TAp73 regulates the expression of Optic Atrophy 1 (OPA1), a protein responsible for controlling mitochondrial fusion, cristae biogenesis and electron transport chain function.
View Article and Find Full Text PDFPlant Cell Physiol
December 2024
Department of Biology, Queen's University, Kingston, ON K7L3N6, Canada.
Calcium sensor proteins play important roles by detecting changes in intracellular calcium and relaying that information onto downstream targets through protein-protein interaction. Very little is known about calcium sensors from plant species that predate land colonization and the evolution of embryophytes. Here, we examined the genome of the multicellular algae, Chara braunii, for orthologs to the evolutionarily conserved calcium sensor calmodulin (CaM) and for CaM-like (CML) proteins.
View Article and Find Full Text PDFPLoS Pathog
October 2024
Tumor Virus RNA Biology Section, The HIV Dynamics and Replication Program, NCI, NIH, Frederick, Maryland, United States of America.
Mol Metab
December 2024
Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom. Electronic address:
Objective: Citrin, the mitochondrial aspartate/glutamate carrier isoform 2 (AGC2), is structurally and mechanistically the most complex SLC25 family member, because it consists of three domains and forms a homo-dimer. Each protomer has an N-terminal calcium-binding domain with EF-hands, followed by a substrate-transporting carrier domain and a C-terminal domain with an amphipathic helix. The absence or dysfunction of citrin leads to citrin deficiency, a highly prevalent pan-ethnic mitochondrial disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!